ࡱ>  R>bjbjT~T~2666 vv8|xd/t ///////$q25B/ptB/W/\// ,|t-&ymc^,/m/0/,5\5$t-5t-B/B//5v v: JCOMM/SPA Expert Team on Operational Ocean Forecasting Systems (ET-OOFS) National Report 2010 Nation: KOREA Operational wind wave prediction system at Korea Meteorological Administration(KMA) The operational ocean wind wave prediction system at KMA has begun in 1992 as part of numerical weather prediction (NWP) system. The 1st generation wave model was adapted with 80km spatial resolution near the Korea peninsula. The 1st major upgrade was made in 1999 with 3rd generation wave model WAM (WAMDI, 1988) for regional wave model(ReWAM) with 0.25 degree resolution. And the global wave model (GoWAM) with 1.25 degree resolution was also developed. This upgrade kept pace with the development of NWP system and new installation of supercomputer at KMA. The sea surface winds for the two types of the wave models were provided by the operational weather forecast model at KMA, the GDAPS (Global Data Assimilation and Prediction System) T213 and the RDAPS (Regional Data Assimilation and Prediction System) with 30km resolution. In 2005, the 224 GFlops NEC SX5 was replaced by 18 TFlops Cray X1E which is Parallel Vector Processor (PVP) machine with 128 node modules. This enhancement of computing power made it feasible to increase the spatial and spectral resolution of the operational ocean wind wave models and to use the optional choice of advanced physical schemes. The 2nd major upgrade has been made in early 2008. The main focus of new system lies in accommodating coastal high resolution wave prediction. The western and southern coastal area of the Korea peninsula is one of the challenging places in ocean modeling for accurate prediction of wave and tidal conditions. Due to very high tidal range (6 ~9 meters) and shallow depth (40 meters in average) of the Yellow Sea, the sea level variation causes significant depth variations in shallow water and becomes key issues in the wave and ocean modeling. To resolve the scattered islands and complex coastal lines, the spatial mesh of 1/120 (near 1km) with 3 longitude by 2 latitude size domain was established. The directional discretion is also increased from 15 to 10 degrees. This high resolution coastal wave model is named CoWW3, and there are 6 CoWW3 domains corresponding to the regional marine forecast zones around the Korean coast. The 6 CoWW3s are nested inside the ReWW3 which has increased spatial resolution from 1/4 of ReWAM to 1/12 after examining the boundary spectra made from it. The period of boundary spectra generation is set to 20 minutes interval. The bathymetry for each CoWW3 domain is provided by KORDI (Korea Ocean Research and Development Institute). Another major shift in the wave forecasting system is changing the source code from WAM to WAVEWATCH-III (Tolman, 2002). Although both model show similar performance, the latter supports optional MPI interface and user friendly pre and post modules. This model also provides easy comparison test bed for the different propagation and source term schemes. As a continuing effort to improve ocean wind wave prediction systems, the global ocean wind wave prediction system was upgraded in May 2009. The previous global wave prediction system GoWAM was replaced by GoWW3. The primary changes consists of modifying the wave model source code from WAM cycle 4 (WAMDI, 1988) to WAVEWATCH-III ver. 2.22 (Tolman et al. 2002). The spatial resolution of the GoWW3 is increased from 1.25 of GoWAM to 0.5 GoWW3, and the directional discretion is also increased from 15 to 10. The ingesting period of sea surface wind forcing is also enhanced from 12 hours interval to 6 hours interval. For the propagation scheme, the Ultimate Quickest (UQ) with diffusion and the UQ with divergence were tested. These schemes show similar results with the UQ with averaging, but the computational cost is too high to be used as an operational system. As it was stated in the Tolman (2002), the unresolved islands groups are major source of local wave model errors. The current GoWW3 does not include the sub-grid modeling of obstacles. The generation of additional obstruction grids will be required. From the continuing efforts to upgrade the wind wave prediction system, there are currently three types of models with different domains of the global (GoWW3, 0.5), the regional (ReWW3, 1/12), the coastal (CoWW3, 1/120) areas, which employ the 3rd generation community wave model (WAVEWATCH-III version 2.22). The operational cycle of 3 systems are two times per day (00, 12UTC). The 6-hour interval sea surface wind from the GDAPS T426L40 (0.5625 in Gaussian grid) is interpolated to 0.5 x 0. 5 spatial grid of GoWW3. As there is no sea ice treatment, the North and the South boundaries are cut at 70 in latitude. The wave spectrum is resolved into 24 angle bins at 15 resolution and 25 frequency discretion from 0.0418 Hz to 0.4114 Hz. The six 3 longitude by 2 latitude domains of CoWW3s are nested inside the ReWW3 whose spatial resolution is 1/12. Table 1. The configuration of operational ocean wind wave prediction systems GoWW3ReWW3CoWW3 (6 Domains)CodeWAVEWATCH-III v. 2.22CoordinateSpherical CoordinateDomain70S-70N 0E-358.75E20N-50N 115E-150ERGW1: 36.50-38.50N, 124.0-127.0E RGW2: 34.75-36.75N, 124.0-127.0E RGS1: 33.00-35.00N, 125.0-128.0E RGS2: 33.50-35.50N, 127.5-130.5E RGE1: 37.00-39.00N, 127.5-130.5E RGE2: 35.25-37.25N, 128.5-131.5ESpatial Res. & Dimensions1/2 (720 by 281)1/12 (421 by 361)1/120 (361 by 241)Spectral Res.25 frequencies 24 directions25 frequencies 36 directionsTime Step720 sec300 sec30 secForecast Length256 hours66 hours24 hoursNumber of Runs2 times / day (00, 12 UTC)Initial & Boundary DataPrevious Runs 12-hour ForecastPrevious Runs 12-hour Forecast ReWW3 boundaryForcing DataGDAPS sea surface windsRDAPS sea surface winds (3-hour interval) Operational Storm surge/Tide prediction system at KMA The Regional Tide/Storm Surge Model (RTSM) at KMA covers 115-150E, 20-52N based on POM (Princeton Ocean Model) (Blumberg and Mellor, 1987) with 1/12 horizontal resolutions including the Yellow Sea, the East China Sea, the East/Japan Sea, and the marginal seas around Korea (Table. 2). A two-dimensional depth-integrated tide and storm surges are simulated using POM with an Arakawa C-grid system. The amplitudes and phases of the tidal constituents as the open boundary condition are taken from eight tidal constituents (M2, S2, K1, O1, K2, P1, N2, and Q1) obtained by Matsumoto et al. (2000). From July, 2006 the RTSM has been applied to formal forecasting model at KMA based on CRAY X1E system. The sea surface wind and pressure from the Regional Data Assimilation and Prediction System (RDAPS) are used as the surface forcing. The level of storm surge is calculated by the difference between the sea level forced by tides only and the sea level forced by tides and meteorological effects such as wind and pressure. The RTSM predicts 48-h storm surge heights for 30 coastal stations at 00:00 UTC and 12:00 UTC every day. In the near future, high resolution coastal storm surges/tide prediction system will be applied as an operational model at KMA. The developing coastal storm surges/tide model covers 6 coastal areas around the Korea peninsula and the horizontal grid size is 1/120( for each area same as the coastal wind wave model (CoWW3). The model output from the regional model is used as the boundary condition of the coastal model. Table. 2 The configuration of storm surge/tide prediction systems RTSMCoSTORM(developing)CodePOM 2DCoordinate Spherical CoordinateDomain115 (E-150 (E 20 (N-52 (N Same as CoWW3Spatial Res. & Dimension 1/12 ( (421 (385)1/120 (361 by 241)Time Step200 sec60 secForecast Length48 hours 24 hoursNumber of Runs2 times/day (00,12 UTC)2 times/day (00,12 UTC)Initial & Boundary Datahot startRTSM boundaryForcing DataRDAPS sea surface wind and mean sea level pressure (3-hour interval)RDAPS sea surface wind and mean sea level pressure (3-hour interval) Ocean Circulation modelling system at KMA KMA has been developing the ocean forecasting system based on ROMS (Regional Ocean Modeling System). ROMS is a free-surface, terrain-following, primitive equation ocean model widely used by the scientific community for a diverse range of applications. This model covers the northwestern Pacific Ocean from 115(E to 150(E and from 20(N to 52(N with 1/12( horizontal resolutions including the Yellow Sea, the East China Sea, the East/Japan Sea, and the marginal seas around Korea. The model has 20 vertical levels that follow the bottom topography. The open boundary data are obtained from a data assimilative global model (Estimating the Circulation and Climate of the Ocean: ECCO). Tidal forcing is applied along the open boundary using eight major tidal components reported by Egbert and Erofeeva (2002). Vertical mixing is calculated using the K-profile parameterization (KPP) scheme (Large et al., 1994). Chapman, Flather, and radiation boundary conditions are used for the free surface elevation, barotropic momentum, and baroclinic momentum, respectively (Marchesiello et al., 2001). Atmospheric boundary conditions such as sea winds and heat flux are obtained by the RDAPS (Regional Data Assimilation and Prediction System). The ROMS predicts 48 hour ocean field at 00UTC every day using RDAPS data. Seasonal discharge amounts of Chanjiang River are obtained from RivDis 1.1 data base. Although our modeling system is still preliminary for the ocean prediction (e.g. SST), we have a plan to provide better information in the near future. Detailed description of the model is given in Table 3. Table. 3 The configuration of ocean circulation prediction systems Regional CodeROMSCoordinate Spherical CoordinateDomain115 (E-150 (E 20 (N-52 (NSpatial Res. & Dimension 1/12 ( (20 layers) (421 (385)Time Step200 secForecast Length48 hours Number of Runs1 times/day (00 UTC)Initial & Boundary Datahot start, ECCO, RivDis Forcing DataRDAPS atmospheric forcing (3-hour interval)  ( The current operational NWP system (GDAPS, RDAPS) was replaced by Unified Model(UM) of UKMO in May 2010. KMA has been operating UM 4DVAR cycle(6 hourly) since April 2009 in parallel with the current NWP system. Development of East/Japan Sea Ocean Forecast System at Korea Ocean Research and Development Institute(KORDI) The East/Japan Sea Ocean Forecast System in the KORDI (Korea Ocean Research and Development Institute) is based on GFDL MOM3 (Modular Ocean Model version 3) for the ocean model and 3 dimensional variational data assimilation (3D-Var) routine for the ocean initialization. The ocean model domain covers the East/Japan Sea from 127.5 to 142.5E in longitude and from 33.0 to 52N in latitude. While the longitudinal resolution is varying from 0.06 (about 5km) near the western boundary to 0.1 (about 10km) in the east of 130E, the latitudinal resolution is fixed to 0.1. The horizontal resolution near the western boundary is smaller than or comparable to the baroclinic Rossby radius of deformation. To resolve the bottom geometry more accurately, the partial bottom cell scheme was used and high resolution bathymetry of 1/60 from Choi et al. (2002) was adopted for the model topography. The vertical resolution is varying from 2.64 m at the surface to 445.97 m at the bottom and the number of the vertical levels is 42. There are 14 levels from top to 100 m for the upper ocean, 9 levels from 100 m to 300 m for the intermediate water and 19 levels from 300 m to the bottom of 4000 m. The ocean model has been integrated asynchronously to reduce the computational cost; the tracer time step is 2400 sec, larger than 800 sec of the time step for the momentum equations. The momentum equation has been also split into the barotropic and baroclinic modes. The surface boundary condition of heat flux and momentum flux are given by KMA operational weather forecast model data. Barotropic current and hydrography as open boundary conditions are obtained from the ECCO (Estimating the Circulation & Climate of the Ocean) at the western boundary referring to Marchesiello et al. (2001) and they are radiated at the eastern boundary. Satellite-borne sea surface temperature and sea surface height, and temperature profiles have been assimilated into the model. The numerical performance of the regional ocean model with 3D-Var system appears to be efficient enough to be used in an operational ocean forecast system. Model-data comparison shows that the reanalysis produced by 3D-Var system fairly well represents not only the mean circulation but also meso-scale eddies. To assess the ocean reanalysis in the East/Japan Sea, its 100m temperature field was compared with measured one from a two dimensional array of pressure-gauge-equipped inverted echo sounders (PIES) in the Ulleung Basin during 2 years between June 1999 and July 2001 (Kim et al., 2009). The forecast skill of this regional ocean model is quantitatively assessed by hindcasting 1 year from the initial of reanalysis at every month from June, 1999 to May, 2000. Consequently, the forecast skill is shown by the correlation between the 100m forecasted temperature field and measured one by the PIES. The correlation persists high within 2 months from the initial though decreases from about 0.8 to 0.6 in average. Now, we expect the East/Japan Sea real-time ocean forecast system targeting 2 weeks forecast. Detailed description of the model is given in Table 3. Table. 4 Configuration of East/Japan Sea Ocean Forecast System Regional CodeGFDL MOM3Coordinate Spherical CoordinateDomain127.5(E-142.5(E 33.0(N-52.0(NSpatial Res. Dimension 0.06~0.1( (42 levels) (153 (192)Time Step2400 secForecast Length2 weeksNumber of Runs1 times/week (Monday)Initial & Boundary DataOcean reanalysis by 3D-Var, ECCOForcing DataRDAPS Atmospheric Forcing (3 hours interval)      \^_mno6 7 J L veVeDeVe6hgCJOJaJmH sH #h9uh\sCJH*OJaJmH sH hJCJOJaJmH o(sH  h9uh\sCJOJaJmH sH h9uhnOJmH sH h9uh\s5CJOJmH sH h25CJOJmH o(sH h9uhn5CJOJmH sH h2h25CJOJo(h25CJOJo(h2h2CJOJh25CJOJQJh2h25CJ PJaJ o(h2h25CJ PJaJ ^_mno "$$& #$/4$Ifa$b$gdJ J4$WD`JgdJ 4$WD`gdJ 4$^gdJ & F4$`gdJ4$gdJgd2$a$gd2   " - B I T Z \ b l x p    ' )  % 0 ^ _ c e } οᅫ○h9uh\sCJOJaJhFCJOJaJmH o(sH  h9uhnCJOJaJmH sH  h9uh CJOJaJmH sH h CJOJaJmH o(sH hJCJOJaJmH o(sH #h9uh\sCJH*OJaJmH sH  h9uh\sCJOJaJmH sH 2 48e%45FKW~dwm"+AILj~ﵪhfSsCJOJaJo(hwhCJOJaJhwh%yCJOJaJhCJOJaJo(hwhnCJOJaJhCJOJaJo(hFCJOJaJhFCJOJaJo(h9uh\sCJOJaJ h9uh\sCJOJaJmH sH 4<>XYZ (|~`cwz  -.bϪttth9uh%yOJaJhah%yCJOJaJhwh(sCJOJ\aJo(hwh%yCJOJ\aJh2CJOJ\aJhfSshfSsCJOJaJhwhfSsCJOJaJhwh%yCJOJaJhwhCJOJaJhCJOJaJo(hfSsCJOJaJo(, R<<$$& #$/4$Ifa$b$gdJkd$$Ifc\\ #QwT, t 6 0H$644 lae4yt M  -xbb$$& #$/4$Ifa$b$gdJkd$$Ifc0#Q t 6 0H$644 lae4yt M-.5?LVbxbbbbbbbbbb$$& #$/4$Ifa$b$gdJkd$$Ifc0#Q t 6 0H$644 lae4yt M @AP[`m<kd*$$Ifc\\ #QwT, t 6 0H$644 lae4yt M$$& #$/4$Ifa$b$gdJb@A,-WX FGKYӽӽӲӲӽȏvk`kh9uh\sCJOJh9uh4HCJOJh9uh-)5CJOJmH sH h2CJOJo(h%yCJOJo(hahWCJOJaJhah4CJOJaJhWCJOJaJo(h+CJOJaJo(h9uh%yOJaJhah%yCJOJaJh9uh%yOJaJmHsH hah%yCJOJaJmHsH%ms<kd$$Ifc\\ #QwT, t 6 0H$644 lae4yt M$$& #$/4$Ifa$b$gdJOkd$$IfcF\ #Qw t 6 0H$6    44 lae4yt M$$& #$/4$Ifa$b$gdJ#,R<<<<$$& #$/4$Ifa$b$gdJkd$$Ifc\\ #QwT, t 6 0H$644 lae4yt M,-<WR<<$$& #$/4$Ifa$b$gdJkdl$$Ifc\\ #QwT, t 6 0H$644 lae4yt MWXbpxbbLbb$$& #$/4$Ifa$b$gd+$$& #$/4$Ifa$b$gdJkdB$$Ifc0#Q t 6 0H$644 lae4yt MeOO9O$$& #$/4$Ifa$b$gdW$$& #$/4$Ifa$b$gdJkd$$IfcF#Q , t 6 0H$6    44 lae4yt M FOII? & F4$gdJ4$gdJkd$$IfcF\ #Qw t 6 0H$6    44 lae4yt M$$& #$/4$Ifa$b$gd+FG!#T%U%%%%% $$4$Ifa$gdJ J4$WD`JgdJ 4$WD`gdJ h 4$`gdJg4$^`ggdJ Ylprt  $ % . 4 : B e f i j !!A!G!V!W!Z![!^!_!b!c!f!g!j!k!n!o!v!w!y!!!!!!!!!!!Ϲĭĭĭĭĭĭĭĭġĕϊhah#GCJOJhah\sCJOJhahaCJOJo(haha6CJOJhahaCJH*OJhahDCJOJhahaCJOJhDCJOJo(hQ_CJOJo(h 0CJOJo(h9uh4HCJOJh9uh\sCJOJ2!!" "i"l"r"""""""#+#3#7#D#V#W##$$'$)$/$|$$$$$$$$$$$$$% %#%)%?%C%S%T%yh9uh\sCJh9uhGaCJPJ jh9uh\sCJPJhgB*CJPJo(phh9uh\sB*CJPJphhgCJPJo(h9uh\sCJPJhahgCJOJhahaCJOJhgCJOJo(hah\sCJOJhDCJOJo(.T%U%\%]%%%%%%%%%%%%%%%%%%%%%%&&&&+&,&1&2&9&:&>&S&T&]&^&e&f&l&m&n&}&~&&&&&&&˯˯˯˯˯˞ّّhah:w9CJOJaJ! jhahw{CJOJ\aJ! jhahw{CJOJ\aJh9uhw{OJaJhahw{CJOJ\aJhahw{CJOJaJhah?aJhah,aJ h2aJo(4%%%%aSS $$4$Ifa$gdJkdl$$IfF W#   0$6    34apytw{%%%%ykk $$4$Ifa$gdJkdi $$If0 # i0$634apyt M%%%%&&&ykkkYk$$1$4$7$8$Ifa$gdJ $$4$Ifa$gdJkd* $$If0 # i0$634apyt M&&!&,&4&?&F&S&aSSSSSS $$4$Ifa$gdJkd $$IfF W#   0$6    34apytw{S&T&^&f&m&aSSS $$4$Ifa$gdJkd $$IfF W#   0$6    34apytw{m&n&~&&&aSSS $$4$Ifa$gdJkd $$IfxF W#   0$6    34apytw{&&&&&aSSS $$4$Ifa$gdJkd $$IfF W#   0$6    34apytw{&&&&&&&&''''''''#','-'1'2'5'6';'<'D'E'G'H'V'W']'^'a'j's't'x'y'|'}''''''''''˾˖؍h9uh"OJaJh\sOJaJo(hah"CJOJ\aJh"CJOJ\aJo(hCJOJ\aJo(hah:w9CJOJaJhahw{CJOJaJh9uhw{OJaJhahw{CJOJ\aJhah:w9CJOJ\aJ1&&&&'aSSS $$4$Ifa$gdJkd$$IfF W#   0$6    34apytw{''','E'W's''aSSSEEE $$4$Ifa$gd" $$4$Ifa$gdJkd$$IfxF W#   0$6    34apytw{'''''''SMMC7 4$WDd`gdJ & F4$gdJ4$gdJkd$$IfF W#   0$6    34apytw{ $$4$Ifa$gd"''''''''(((()) ) )))!)")-).)`)d)r)s)|))))))))))* *w*********+++Ǿh%CCJKHOJo(hqhOCJKHOJh%CCJOJo( jhqhOCJOJhqhOCJOJh"CJOJo(hqCJOJo(h9uh u5CJOJmH sH h <5CJOJmH o(sH h9uhg&o5CJOJmH sH 1++ ,"-&-=-------- . .P.Q.Z.\.f.g.r.s....................ȿܯܦqqqqq! jhah-CJOJ\aJhah-CJOJ\aJhah-CJOJaJhah uaJh+h6 9OJh+CJOJo( hqOJo(hqCJOJo(hqhqCJOJhOCJOJo(hqhOCJOJhqhOCJKHOJhOCJKHOJo()' . .P.Q.[.\.a.f.Gkd$$If0 # i0$634apyt M $$4$Ifa$gdJ J4$WD`JgdJ 4$WDd`gdJ 4$WDd`gdJf.g.s..ykk $$4$Ifa$gdJkd$$If0 # i0$634apyt M.....ykkk $$4$Ifa$gdJkdX$$If0 # i0$634apyt M......ykkkk $$4$Ifa$gdJkd$$If0 # i0$634apyt M..........////6/7/N/O/X/g/i/u/v/|/}//////////////ŏvkbkh3WCJOJo(h>>>>> >>>ҽIJĽҽIJIJIJIJҽҲIJIJĐҽ! jhah)tCJOJ\aJ! jhah)tCJOJ\aJh)tCJOJ\aJ hah)thah)tCJOJ\aJhah)tCJOJaJ h)taJhah)taJ h2aJo(h)th)tCJOJ8u=v={=={oo $$Ifa$gdM kd`$$If0 # i0$634apytM ===={oo $$Ifa$gdM kd$$If0 # i0$634apytM ====={ooo $$Ifa$gdM kd$$If0 # i0$634apytM =====>{oooo $$Ifa$gdM kd$$If0 # i0$634apytM > >>>{oo $$Ifa$gdM kdP$$If0 # i0$634apytM >>>>>,>->4>5>6>M>Q>S>Y>[>\>s>t>>>>>>>>>>>>>>>>>>>>>Ҹh6jh6Uh)tCJOJaJhah)tCJOJ\aJo( hah)thah)tCJOJaJhah)tCJOJ\aJh)tCJOJ\aJ%>>->5>{oo $$Ifa$gdM kd $$Ifx0 # i0$634apytM 5>6>E>[>{oo $$Ifa$gdM kd$$If0 # i0$634apytM [>\>t>>{oo $$Ifa$gdM kd$$If0 # i0$634apytM >>>>{oo $$Ifa$gdM kd@$$Ifx0 # i0$634apytM >>>>>>>>>>>>>{vqoqoqoqoovgdjgd)tkd$$If0 # i0$634apytM 01h2P. A!"#$%S $$If!vh5Q5w5T5,#vQ#vw#vT#v,:V c t 6 0H$65Q5w5T5,e4yt M$$If!vh5Q5#vQ#v:V c t 6 0H$65Q5e4yt M$$If!vh5Q5#vQ#v:V c t 6 0H$65Q5e4yt M$$If!vh5Q5w5T5,#vQ#vw#vT#v,:V c t 6 0H$65Q5w5T5,e4yt M$$If!vh5Q5w5T5,#vQ#vw#vT#v,:V c t 6 0H$65Q5w5T5,e4yt M$$If!vh5Q5w5#vQ#vw#v:V c t 6 0H$65Q5w5e4yt M$$If!vh5Q5w5T5,#vQ#vw#vT#v,:V c t 6 0H$65Q5w5T5,e4yt M$$If!vh5Q5w5T5,#vQ#vw#vT#v,:V c t 6 0H$65Q5w5T5,e4yt M$$If!vh5Q5#vQ#v:V c t 6 0H$65Q5e4yt M$$If!vh5Q5 5,#vQ#v #v,:V c t 6 0H$65Q5 5,e4yt M$$If!vh5Q5w5#vQ#vw#v:V c t 6 0H$65Q5w5e4yt M$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V x0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V x0$6,5 5 5 / / 34 pytw{$$If!vh5 5 5 #v #v #v :V 0$6,5 5 5 / / 34 pytw{$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V x0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V x0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pyt M$$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V x0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V x0$6,5 5i34 pytM $$If!vh5 5i#v #vi:V 0$6,5 5i34 pytM b 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~PJ_HmH nHsH tHR`R \s\$1$4$7$8$a$ KHOJ_HaJmH nHsH tH(A ( 0 } 4Bi@B \ \4 l4a $k $] L :P@: \s8 27$8$CJOJPJaJT^T \s| ()"$dd1$4$7$8$[$\$a$ CJKHQJ.U. 6 9Xt|l >*B*ph0"0 j8 B#G$414 j8 Char KHOJaJ0 B0 j B#G$4Q4 j Char KHOJaJ$B@b$ n82q2 n8 Char KHOJaJ66 )t 8 2 Char CJKHPJFF .Z ] } VD^ OJPJQJ^JaJRR .Zd1$4$7$8$G$B*KHQJ^J aJphRoR 2Body 1@&%B*CJPJ _HmH nHphsH tHPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!ã H]theme/theme/theme1.xmlYMoE#F{oc'vGuر i-q;ޝfvg53NjBBāJz@@VR~M _NV6ԇ;1CDHʓW?_I|$l{ׇsk 'f1[ZVbL%8cǟ={s1(|&7qH 6دk.~8$ ^xKzF]|2 _62E8*օ05z^gRKgVݻGw~me ]eۏ˗Ռf<>?WxTiL$J0W2/F10-Sl& R*T䠯N1q=xC@7((F\Uw[!–Au:*DKhNi2ޯȯ7o ZYǚ""o~“d@o?oz>muXhz|26PSFH30K->,j:sT$)k\(ANaخ{I(3֡D)p3˕5veM}x@b3B99V4 [1_FX]+ujiuiudiXx xyZ4O0#݁(edH= R+Vr"FwJZ+H;M {(g4 S7{{ F} 4 +vUKol~1yUV%Uxv9ryaRAT4AoEfiY}H7H8.dҬkI{-߬x-s4~AgÙ+Ωųtvavm!KAUnA”4/ hH7PK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!ã H]theme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] 6   bY!T%&'+./=>> "#$)234<@AFMOU -m,WF%%%&S&m&&&'''f...../6/h//0u====>>5>[>>>>!%&'(*+,-./0156789:;=>?BCDEGHIJKLNPQRSTVWXYZ  /Xb$s0c~)Sft!b$pBܝ4/NU3@ 0(  B S  ?H0(  6 #706ace5066UZ:@b g v {   j o @Fbmx} &16""b#i#######%%'%-%`'f'))++++1,5,..../#/0/;///1122:3E366666666666666.  66333333_mbAU\34^fEWQ&e&g&&&&&&&&&''v'=,j,+525k5t66666666666666666oTU((((//M/W/\/d/2 3.3.343<3B3E344 55*5+56.L^$"1 bR4+<:T}obLSrKSyL^`o(. p^`phH. @p^@`phH. p^`phH. ` p^` `phH.  p^ `phH.  p^ `phH. p^`phH. p^`phH.  p^ `po(hH. p^`phH. @p^@`phH. p^`phH. ` p^` `phH.  p^ `phH.  p^ `phH. p^`phH. p^`phH. 0^`0o(hH. 0^`0o(hH. p0p^p`0o(hH. @ 0@ ^@ `0o(hH. 0^`0o(hH. 0^`0o(hH. 0^`0o(hH. 0^`0o(hH. P0P^P`0o(hH.^`o(. p^`phH. @p^@`phH. p^`phH. ` p^` `phH.  p^ `phH.  p^ `phH. p^`phH. p^`phH.^`o()p^`p.@p^@`p.p^`p.` p^` `p. p^ `p. p^ `p.p^`p.p^`p.^`o(. p^`phH. @p^@`phH. p^`phH. ` p^` `phH.  p^ `phH.  p^ `phH. p^`phH. p^`phH..T}oboSyo4+<Sr^$"1R2        xNk        R2        l+>        R2        _^)t\"M 7 q?,3 | ѹ@ ?= * Courier New;|i0BatangA  4?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklnopqrstuvwxyz{|}~Root Entry FymcData \ 1Tablem5WordDocument2SummaryInformation(DocumentSummaryInformation8CompObju  F#Microsoft Office Word 97-2003 MSWordDocWord.Document.89q