4th Meeting of the ICG/PTWS WG-SWP August 22-23 2016, Honiara, Solomon Islands

JMA Report on NWPTAC Enhanced Products

Tomoaki OZAKI Japan Meteorological Agency (JMA)

Timeline on NWPTAC Enhanced Product (draft)

Apr. 2015 ICG/PTWS XXVI in Hololulu, Hawaii, USA

- Approval of NWPTAC's Enhanced Products proposal.

Feb. 2016 PacWave16

Experimental issuance of NWPTAC Enhanced Products.

<Evaluation>

Feb. 2017 PacWave17

- Experimental issuance of NWPTAC Enhanced Products.

<Evaluation>

Mar. 2017 ICG/PTWS-XXVII

Approval of NWPTAC's Enhanced Products.

xxx 2017 (TBD) Parallel issuance of existing and enhanced products.

xxx 2018 (TBD) Final changeover to NWPTAC Enhanced Products.

Schedule on PacWave16

11 Aug. 2015 Announcement on PacWave16 by IOC to Member States

[Aug.-Nov. 2015 Revision of Forecast points]

14 Jan. 2016 Exercise manual available on PacWave Website

1-5 Feb. 2016 PacWave16

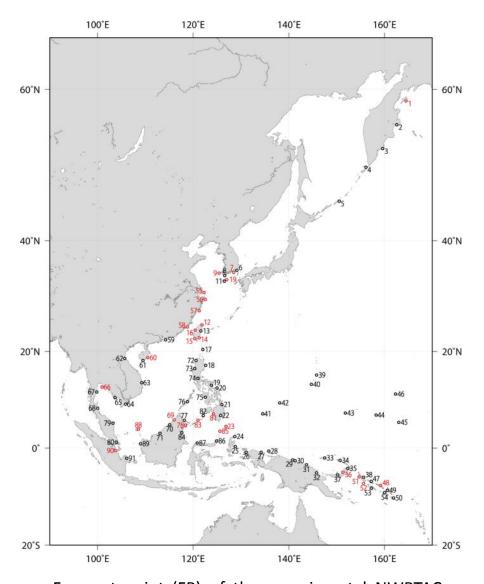
8 Feb.- 2016 Evaluation Survey

xxx 2016 Summary Report

Revision of Forecast Points

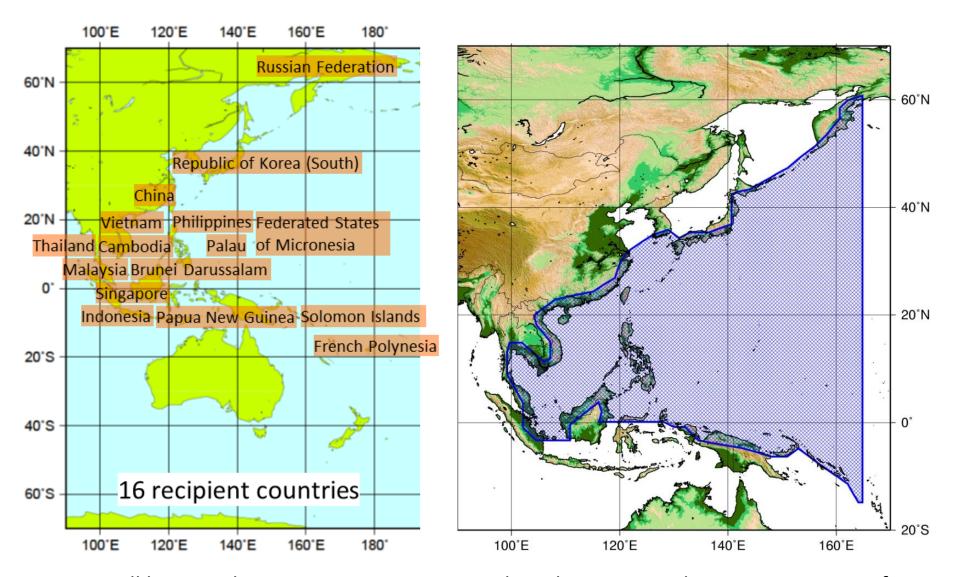
- Forecast Points (FPs) used for NWPTA Enhanced Products are planned to be revised from current FPs taking into account;
- ✓ aligning with PTWC products.
- ✓ survey results on FP revision for recipient Member States.

- Survey on FP revision was conducted Aug.-Nov. 2016.
- ✓ 4 Member States requested revision and/or addition.
- ✓ Basically all requests on FPs are reflected, except for one offshore point. Requests on rename of Coastal Blocks are not reflected because of consistency and continuity.


PROPOSED LIST OF FORECAST POINTS

Note: Red characters represent modification after ICG/PTWS-XXVI/3 Annex IV Appendix B Note: Green rows represent additional FPs to the current list Note: Orange cells represent modifications from the current list

COASTAL BLOCK	FORECAST POINT	LATITUDE	LONGITUDE
EAST COASTS OF	1	1	
KAMCHATKA PENINSULA	UST KAMCHATSK	56.1N	162.6E
EAST COASTS OF	_		
KAMCHATKA PENINSULA	PETROPAVLOVSK_K	53.2N	159.6E
EAST COASTS OF	_		
KAMCHATKA PENINSULA	OSTROV_KARAGINSKIY	58.8N	164.5E
KURIL ISLANDS	SEVERO_KURILSK	50.8N	156.1E
KURIL ISLANDS	URUP_IS.	46.1N	150.5E
SOUTH COASTS OF KOREAN			
PENINSULA	BUSAN	35.1N	129.1E
SOUTH COASTS OF KOREAN			
PENINSULA	NOHWA	34.2N	126.6E
SOUTH COASTS OF KOREAN			
PENINSULA	SEOGWIPO	33.2N	126.5E
SOUTH COASTS OF KOREAN			
PENINSULA	CHEJU_ISLAND	33.5N	127.0E
SOUTH COASTS OF KOREAN		34.7N	128.4E
PENINSULA	TONGYEONG		
SOUTH COASTS OF KOREAN		34.6N	125.4E
PENINSULA	HEUKSANDO		
TAIWAN	HUALIEN	24.0N	121.6E
TAIWAN	CHILUNG	25.2N	121.8E
TAIWAN	TAITUNG	22.7N	121.2E
TAIWAN	KAOHSIUNG	22.5N	120.3E
TAIWAN	HOMEL	24.2N	120.4E
EAST COASTS OF			
PHILIPPINES	BASCO	20.4N	122.0E
EAST COASTS OF			
PHILIPPINES	PALANAN	17.2N	122.6E
EAST COASTS OF		40.00	400.05
PHILIPPINES	LEGASPI	13.2N	123.8E
EAST COASTS OF	LACANIC	40.00	405.05
PHILIPPINES	LAOANG	12.6N	125.0E
EAST COASTS OF	MADRID	00.00	426.0E
PHILIPPINES EAST COASTS OF	MADRID	09.2N	126.0E
PHILIPPINES	DAVAO	06.9N	125.7E
NORTH COASTS OF IRIAN	DAVAO	00.514	125.7L
JAYA	BEREBERE	02.5N	128.7E
NORTH COASTS OF IRIAN	DENEDENE	02.011	120.1L
JAYA	PATANI	00.4N	128.8E
NORTH COASTS OF IRIAN		20.111	.20.02
JAYA	SORONG	00.85	131.1E
NORTH COASTS OF IRIAN	20110110	00.00	101.12
JAYA	MANOKWARI	00.8S	134.2E
NORTH COASTS OF IRIAN			
JAYA	WARSA	00.6S	135.8E
NORTH COASTS OF IRIAN			
JAYA	JAYAPURA	02.4S	140.8E
NORTH COASTS OF IRIAN			
JAYA	GEME	4.6N	126.8E
NORTH COASTS OF PAPUA			
NEW GUINEA	VANIMO	02.6S	141.3E


COASTAL BLOCK	FORECAST POINT	LATITUDE	LONGITUDE
NORTH COASTS OF PAPUA			
NEW GUINEA	WEWAK	03.5S	143.7E
NORTH COASTS OF PAPUA NEW GUINEA	MADANG	05.2S	145.8E
NORTH COASTS OF PAPUA	MADANG	05.25	145.0E
NEW GUINEA	MANUS IS.	02.0S	147.5E
NORTH COASTS OF PAPUA		52.55	
NEW GUINEA	RABAUL	04.2S	152.3E
NORTH COASTS OF PAPUA			
NEW GUINEA	KAVIENG	02.5S	150.7E
NORTH COASTS OF PAPUA NEW GUINEA	KIMBE	05.6S	150.2E
NORTH COASTS OF PAPUA	KIMDE	05.65	150.2E
NEW GUINEA	KIETA	06.1S	155.6E
NORTH COASTS OF PAPUA	130	55.15	100.02
NEW-GUINEA			
SOLOMON SEA	AMUN	6.0S	154.7E
NORTH COASTS OF PAPUA			
NEW GUINEA	ULAMONA	5.0S	151.3E
MARIANA ISLANDS MARIANA ISLANDS	GUAM SAIPAN	13.4N 15.3N	144.7E 145.8E
PALAU	MALAKAL	07.3N	134.5E
MICRONESIA	YAP IS.	07.5N 09.5N	138.1E
MICRONESIA	CHUUK IS.	07.4N	151.8E
MICRONESIA	POHNPEL IS.	07.0N	158.2E
MICRONESIA	KOSRAE IS.	05.5N	163.0E
MARSHALL ISLANDS	ENIWETOK	11.4N	162.3E
NORTH COASTS OF SOLOMON			
ISLANDS	PANGGOE	06.9S	157.2E
NORTH COASTS OF SOLOMON			
ISLANDS	AUKI	08.8S	160.6E
NORTH COASTS OF SOLOMON ISLANDS	KIRAKIRA	10.4S	161.9E
NORTH COASTS OF SOLOMON	NIVANIVA	10.43	101.3L
ISLANDS	GHATERE	7.8S	159.2E
SOLOMON SEA	MUNDA	08.4S	157.2E
SOLOMON SEA	HONIARA	09.3S	160.0E
SOLOMON SEA	FALAMAE	7.4S	155.6E
COASTS OF EAST CHINA SEA	SHANGHAI	31.2N	122.3E
COASTS OF EAST CHINA SEA	WENZHOU	27.8N	121.2E
COASTS OF EAST CHINA SEA	ZHOUSHAN	29.9N	122.5E
COASTS OF SOUTH CHINA SEA	HONG KONG	22.2N	444.2E
COASTS OF SOUTH CHINA	HONG_KONG	22.3N	114.2E
SEA	SANYA	18.2N	109.5E
COASTS OF SOUTH CHINA			
SEA	QUANZHOU	24.8N	118.8E
COASTS OF SOUTH CHINA			
SEA	HAINAN_ISLAND	18.8N	110.5E
COASTS OF GULF OF TONKIN	VINH	18.6N	105.7E
EAST COASTS OF INDO CHINA PENINSULA	OUI NHON	13.7N	100 2E
EAST COASTS OF INDO CHINA	QUI_NHON	13.7N	109.2E
PENINSULA	BAC LIEU	09.3N	105.8E
GULF OF THAILAND	PRACHUAP KHIRI KHAN	11.8N	099.8E
GULF OF THAILAND	SIHANOUKVILLE	10.6N	103.6E

COASTAL BLOCK	FORECAST POINT	LATITUDE	LONGITUDE
GULF OF THAILAND	PATTAYA	12.8N	100.9E
NORTHWEST COASTS OF			
KALIMANTAN	MUARA	05.0N	115.1E
NORTHWEST COASTS OF			
KALIMANTAN	BINTULU	03.2N	113.0E
NORTHWEST COASTS OF KALIMANTAN	KOTA KINABALU	6.0N	116.0E
WEST COASTS OF	_		
PHILIPPINES	LAOAG	18.2N	120.6E
WEST COASTS OF			
PHILIPPINES	SAN_FERNANDO	16.6N	120.3E
WEST COASTS OF			
PHILIPPINES	MANILA	14.6N	121.0E
SULU SEA	ILOILO	10.7N	122.5E
SULU SEA	PUERTO_PRINCESA	09.8N	118.8E
SULU SEA	SANDAKAN	05.9N	118.1E
SULU SEA	LAHAD_DATU	4.9N	118.4E
EAST COASTS OF MALAY	KUARA_TERENGGANU		
PENINSULA	KUALA_TERENGGANU	05.3N	103.2E
EAST COASTS OF MALAY			
PENINSULA	SINGAPORE	01.3N	103.9E
CELEBES SEA	ZAMBOANGA	06.9N	122.1E
CELEBES SEA	MAIMBUNG	5.9N	121.0E
CELEBES SEA	COTABUTO_CITY	7.3N	124.2E
CELEBES SEA	TARAKAN	03.3N	117.6E
CELEBES SEA	MANADO	01.6N	124.9E
CELEBES SEA	TOLITOLI	01.1N	120.8E
CELEBES SEA	TABUKAN_TENGAH	3.6N	125.6E
NATUNA SEA	SINGKAWANG	01.0N	109.0E
NATUNA SEA	PANGKALPINANG	02.1S	106.1E
NATUNA SEA	KUALA_INDRAGIRI	0.5S	103.8E
NATUNA SEA	KEPULAUAN_RIAU	4.0N	108.5E

Forecast points(FP) of the experimental NWPTAC Enhanced Products for PacWave16. Changed points from current ones are indicated as red symbols. (FP names are listed in the next page)

Recipient Countries and Area of Coverage of NWPTA

NWPTA will be issued to 16 recipient countries when the NWPTAC detects occurrence of an earthquake of magnitude 6.5 or greater in the blue-shaded area.

Dissemination of Products

Text Products

- > GTS
- > Email
- > FAX

... basically same with the present version

Graphical Products

- > Email
 - ... sent to designated IOC Tsunami Focal Points of recipient countries

Forecast Model Description

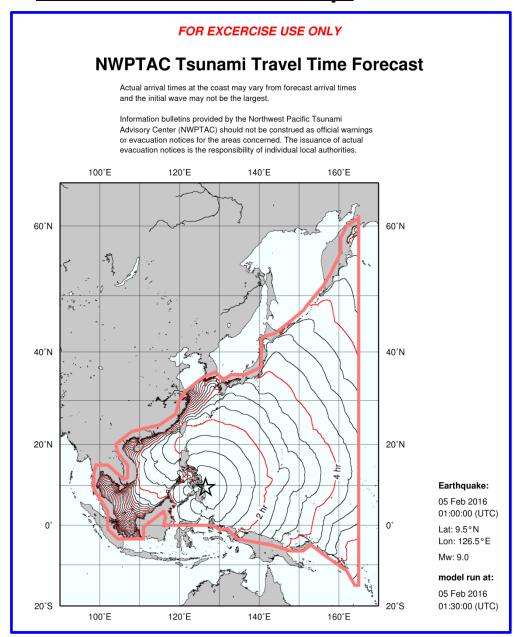
Numerical Simulation

- JMA uses a tsunami forecast system with a numerical simulation technique based on the nonlinear long wave theory including effects of Coriolis force
 (In the procedure for tsunami travel time map, the nonlinear effects are neglected)
- For the Northwest Pacific, grid resolution of 5 arc-min is used

Deep-ocean Maximum Tsunami amplitude

- The system produces a time series of the sea level fluctuations caused by the passing tsunami waves at each model grid point in the ocean
- Shown on the deep-ocean maximum tsunami amplitude forecast map is the maximum amplitude (zero to peak wave amplitude) of those fluctuations

Coastal Maximum Tsunami amplitude


 For each model grid point near the coast, the tsunami amplitude at the coast can be estimated based on Green's Law as follows:

$$A_{coast} = A_{offshore} (D_{offshore}/D_{coast})^{1/4},$$

where A_{coast} is the tsunami amplitude at the coast, $A_{offshore}$ is the tsunami amplitude at the offshore grid point, $D_{offshore}$ is the depth of the ocean at the offshore grid point, and D_{coast} is the depth of the ocean at the coast

The coastal ocean depth is set to be 1 m

Description of Experimental Products Tsunami travel time map

 This map shows the estimated travel time based on determined earthquake location (hypocenter or centroid) and magnitude.

Limitations

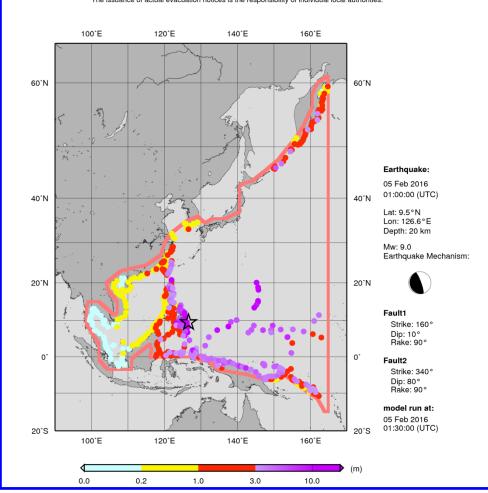
Actual arrival time at the coast may vary from forecast arrival time due to many reasons including:

- Uncertainties in tsunami source (the area of seafloor deformation is assumed from earthquake location and magnitude)
- Uncertainties in bathymetry especially in the vicinity of the observation point
- Nonlinear effects on tsunami propagation which is not taken into account in estimating travel time (the nonlinear effects may be important especially in shallow water)
- Difficulty in measuring the first wave arrival from observed sea level data

Description of Experimental Products

Coastal tsunami amplitude forecast map

FOR EXCERCISE USE ONLY


NWPTAC Coastal Tsunami Amplitude Forecast

This map shows the larger maximum coastal amplitudes of two different forecasts based on a conjugate fault set obtained by CMT analysis.

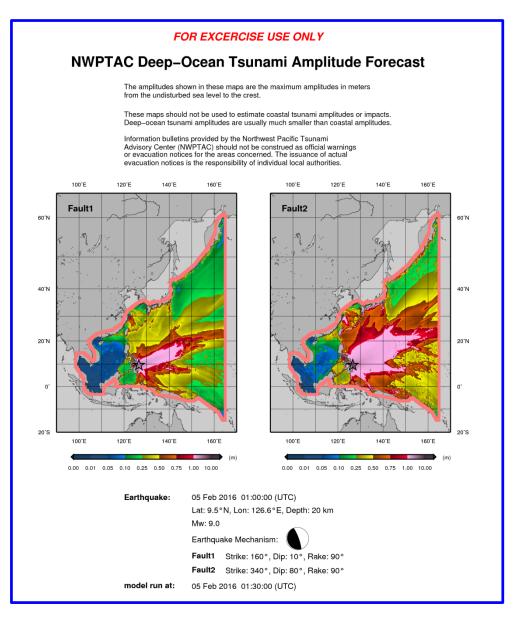
The amplitudes are shown in meters from the undisturbed sea level to the crest.

Actual coastal amplitudes at the coast may vary from forecast coastal amplitudes due to uncertainties in the forecast and local features.

Information bulletins provided by the Northwest Pacific Tsunami Advisory Center (NWPTAC) should not be construed as official warnings or evacuation notices for the areas concerned. The issuance of actual evacuation notices is the responsibility of individual local authorities.

- This map shows the individual coastal points colored according to the forecast tsunami amplitude at each point
- The larger of two different forecast amplitudes based on a conjugate fault set obtained by CMT analysis is used as a forecast tsunami amplitude at each point

Limitations


Actual tsunami amplitudes at the coast may vary from forecast amplitudes due to many reasons including:

- Uncertainties in tsunami source (two rectangular faults are assumed based on the result of CMT analysis)
- Uncertainties in the way that the tsunami interact with the coast (a general approximation, Green's Law, is used)

The results can vary easily by a factor of two because of the uncertainties written above.

Description of Experimental Products

Deep-ocean tsunami amplitude forecast map

- This map shows the maximum tsunami amplitude at each place in the deep ocean.
- It shows how the tsunami is directed away from the tsunami source, how it is focused and defocused by the shape of the seafloor, and how it diminishes by spreading
- Two different maps based on a conjugate fault set obtained by CMT analysis will be provided

Limitations

Actual deep-ocean tsunami amplitude may vary from forecast amplitudes mainly due to uncertainties in tsunami source (two rectangular faults are assumed based on the result of CMT analysis).

This map should not be used to estimate coastal tsunami amplitudes or impacts.

Tentative Evaluation of PacWave16

- 12 Total responses. (Vietnam, Malaysia, Hong Kong (China), Papua New Guinea, Russia, Indonesia, China, Singapore, French Polynesia, Samoa, Solomon Islands, South Korea)
- Basically, NWPTAC Enhanced Products are regarded as useful in helping to assess national tsunami threat.
- Among NWPTAC Enhanced Products, text message is regarded as the most useful product.
- Preparation to utilize NWPTAC Enhanced Products is ongoing.

To do list

Preparation of User's Guide

Currently, NWTPAC users guide is published as SECTION 6 of "Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS)". We are planning to publish a new separate edition of Users Guide for NWPTAC Enhanced Products as with PTWC.

- Modification based on PacWave16 and 17 results.
- Coordination with PTWC on operation.
- Technical issues (resolution, revision of database, offshore grid points for green's law, operation procedure, ...)

Future schedule (draft)

Apr. 2015 ICG/PTWS XXVI in Hololulu, Hawaii, USA

- Approval of NWPTAC's Enhanced Products proposal.

Feb. 2016 PacWave16

Experimental issuance of NWPTAC Enhanced Products.

<Evaluation>

Feb. 15-17 PacWave17 (IOC CL 2636, Aug 16, 2016)

- Experimental issuance of NWPTAC Enhanced Products.

<Evaluation>

2017

Mar. 2017 ICG/PTWS-XXVII

PacWave17 results and recommendations

 Approval of NWPTAC's Enhanced Proucts taking into consideration of PacWave17

xxx 2017 (TBD) Parallel issuance of existing and enhanced products.

xxx 2018 (TBD) Final changeover to NWPTAC Enhanced Products.