An Update on Air-Sea Flux Activities for OOPC March 2021 Panel Meeting Meghan Cronin (NOAA PMEL) with contributions from Tony Lee (JPL)

Since April 2019:

Sep 2019 OceanObs19

Mar 2020 COVID19. OOPC meeting canceled.

Sep 2020 Virtual Meeting Ocean Best Practices Systems "Surface Radiation" Community Consultation Workshop

Nov 2020 SCOR WG #162 Observing Air-Sea Interactions Strategy

Action Items from 2019 Joint Meeting

- ✓ Caterina Tassone (GCOS) liaison with WCRP to coordinate with existing WCRP ocean & landbase flux groups (WDAC, Surflux Task Team, GEWEX, SOLAS...).
- ✓ Liz Kent (AOPC) and Rainer Hollman (AOPC) will discuss with AOPC feasibility of remotelysensed humidity & temperature profiles, optimized for surface boundary layer.
- Bob Weller (OOPC) will work with Christian Lanconelli (BSRN) to set up workshop on a global (ocean & land-based) radiation network, and develop best practices for surface radiation.
- ✓ Matt Palmer (OOPC) will liaison with WMO/WGNE & WCRP/WGCM
- Meghan Cronin (OOPC) will help coordinate a vision paper for broader community, beyond OceanObs19.
- ✓ Scoping of a SCOR Working Group Proposal for organizing/implementing near-term goals?

Slide from Joint Meeting April 2019

Surface Heat Flux Essential Climate Variables (ECVs)

Aunosphere	Ld
Surface	Hydro
 Precipitation Pressure Radiation budget Temperature 	Groundwat <u>Lakes</u> River disch
 Water vapour Wind speed and direction 	Cryos Glaciers
• Earth radiation budget	 Ice sheets a Permafrost Snow
LightningTemperature	Bios
 Water vapor Wind speed and direction 	Above-grou <u>Albedo</u>
Atmospheric Composition	Evaporation Fire
Aerosol and ozone precursors Aerosols properties	 Fraction of photosynthe radiation (FA
Carbon dioxide, methane and other greenhouse gases	Land cover Land surface
 Cloud properties Ozone 	Leaf area ir Soil carbon Soil moistu
	Anthrop
nate-	 Anthropogotic gas fluxes Anthropogotic Anthropogotic Anthrop

Atmosphere

Land

osphere

- ter
- narge

sphere

- and ice shelves

phere

- und biomass
- on from land
- **Fabsorbed** etically active APAR)
- ce temperature
- ndex
- ure

posphere

- enic Greenhouse
- enic water use

Ocean

Physical

- Ocean surface heat flux .
- Sea ice .
- Sea level
- Sea state
- Sea surface currents .
- Sea surface salinity .
- Sea surface stress
- Sea surface temperature
- **Subsurface currents** .
- Subsurface salinity .
- Subsurface temperature .

Biogeochemical

- **Inorganic carbon** .
- **Nitrous oxide**
- **Nutrients**
- **Ocean colour**
- **Transient tracers** .

Biological/ecosystems

- **Marine habitat properties**
- .

https://gcos.wmo.int/en/essential-clim variables/ecv-factsheets

Oxygen

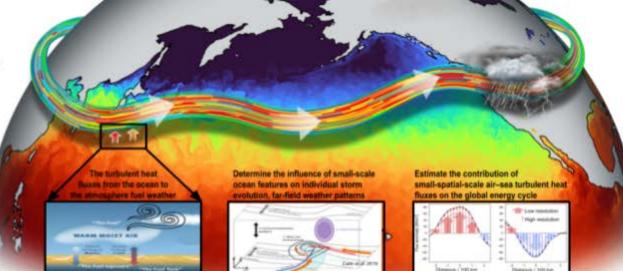
Plankton

For global coverage of air-sea heat fluxes, we must:

Flux EOV/ECV	2018 2019 2020 2021 2022 2023 20	024 2025 2026 2027 2028 2029 2030	
Bulk SST	Partially met	Adequate	
Skin Temperature	Partially met	Adequate	
Wind Speed and Direction	Partially met	Adequate	
Air Temperature	Not met	Adequate	
Humidity	Not met	Adequate	
Bulk Surface Currents	Partially met	Adequate	
Skin Surface Currents	Not met	Adequate	
Surface Solar Radiation	Partially met	Adequate	
Surface Longwave Radiation	Partially met	Adequate	
Albedo	Partially met	Met	
Sea State	Requirement Unknown	Requirement Known	

Requirement not met / inadequate
Requirement partially met / threshold
Requirement adequately met / breakthrough
Requirement fully met / ideal goal

Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"


Optimize satellite-based boundary layer obs for near-surface air temperature & humidity,

.....

Expand the global network of *in situ* air-sea interaction observations

Butterfly's open science accelerates improvements in subseasonal-to-seasonal forecasts by revealing the influence of small-scale air-sea exchange on large-scale weather and climate

Butterfly measures all the geophysical data needed to estimate the air-sea turbulent heat and moisture WHAT? fluxes at unprecedented accuracy (~50% increase) and resolution (20 km) for 2 years.

Building on a decade of NASA technology developments, Butterfly combines a passive microwave HOW? radiometer, hyperspectral sounder, and digital backend to provide accurate, RFI-robust data.

Channel (GHz)	Footprint	2-DAY COVERAGE
	(Em)	
0.8	25x22	STATE OF THE STATE
10.7	17x14	Same and a second second
18.7	13x12	The second second second second
23.8	12x11	11010101252101010101010101010101
37	12x10	MARKANAN AN AMAMPAT AN
110-118	17x14	1.5 * * * * * * * * * 1.1.1 .1
160-183	12x10	and the second s
Swath width	562	~
Resampled	20	

The ocean is the main source of heat and water to the atmosphere through air-sea temperature differences (the sensible heat) and evaporation (the latent heat), the turbulent heat fluxes. Near large, warm, ocean western boundary currents (WBC), small-spatial scale heat fluxes influence both local atmospheric variability and remote weather and climate. No past, current, or planned satellite carries the channel combination needed to estimate these fluxes. This observational gap has hindered our understanding of the underlying air-sea interaction processes as well as our ability to discriminate and improve models and enhance prediction skills. Butterfly fills this gap. Butterfly is an open-by-design mission. Open data, open software, open access, accelerating science return, maximizing community engagement, and increasing societal benefit.

WHO?

Dr. Chelle Gentemann (PI) and Dr. Carol Anne Clayson (DPI) lead an interdisciplinary team of expert meteorologists, oceanographers, and remote sensing specialists.

"Butterfly" is a proposed NASA EVM that would lead to significant

NASA Earth Venture

Missions (EVMs) are

science driven,

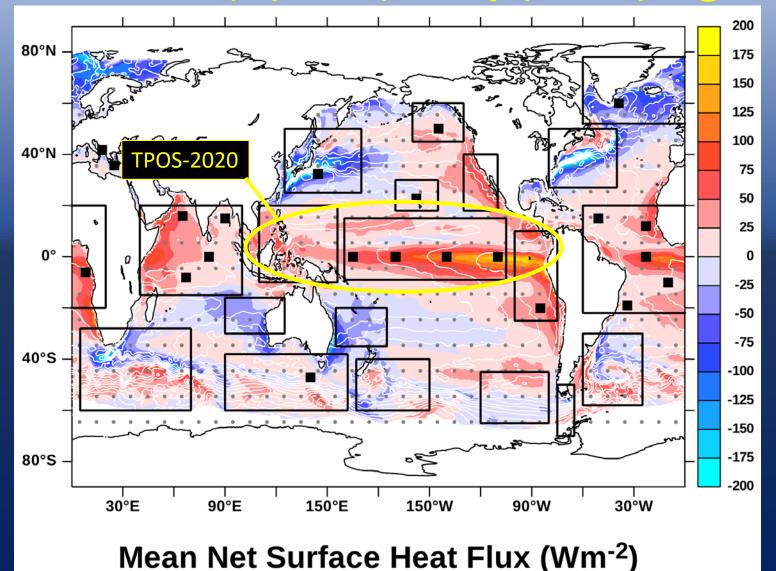
competitively

selected, low cost

satellite missions

improvement in satellite-based air-sea heat fluxes by 2027

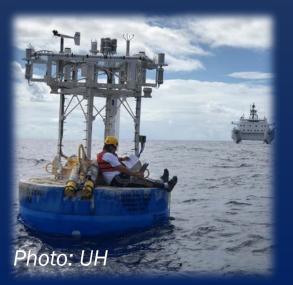
Courtesy Tony Lee

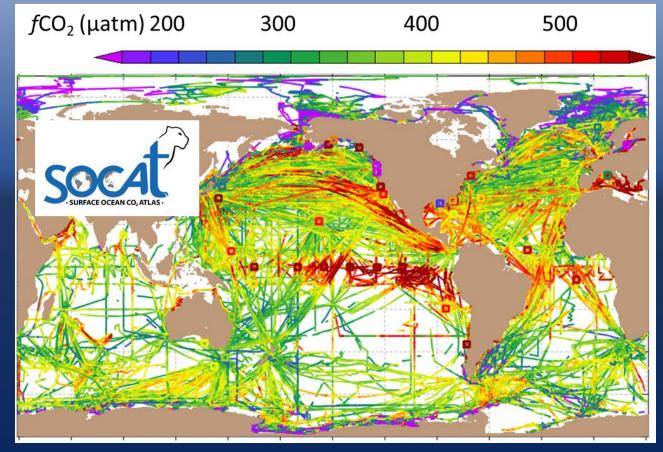

Global network: 500-1000 drifting or mobile platforms and more reference stations (squares) in key (boxed) regions

Drifting and Mobile Flux Platforms (examples)

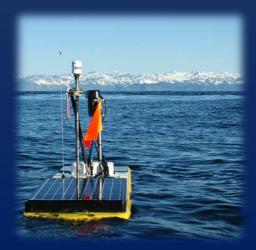
Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"

Reference Stations (examples)

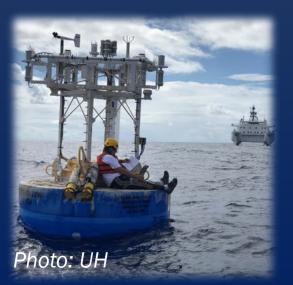


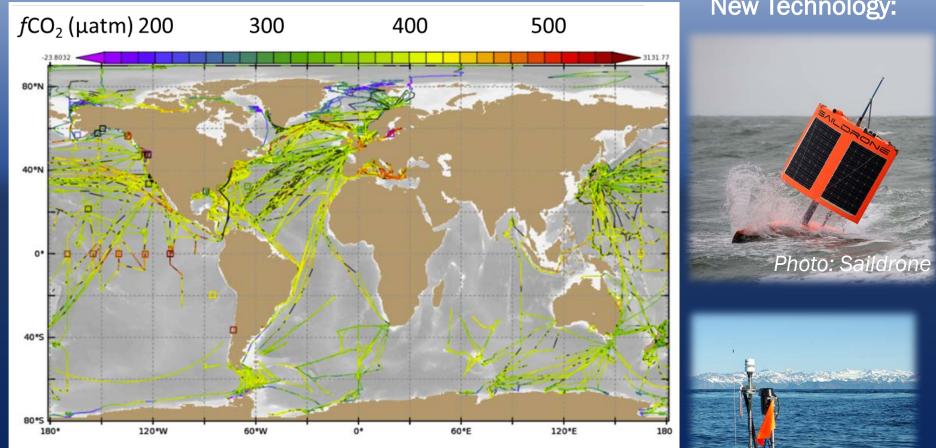

Surface ocean CO₂ flux: all seawater pCO₂ measurements collected since 1957

Established Platforms:



Wanninkhof et al. (2019) **"A Surface Ocean CO₂ Reference** Network, SOCONET and Associated Marine Boundary Layer CO₂ Measurements" New Technology:




Surface ocean CO₂ flux: all seawater pCO₂ measurements collected in 2015

Established Platforms:

Wanninkhof et al. (2019) "A Surface Ocean CO₂ Reference Network, SOCONET and Associated Marine Boundary Layer CO₂ Measurements"

New Technology:

SCOR WG #162 for developing an Observing Air-Sea Interactions Strategy (OASIS) for 2030 airseaobs.org

Expected lifetime as a SCOR Working Group: November 2020 – October 2023

A "system-as-a-whole" approach for making surface and boundary layer observations relevant to the Earth's energy, water, and carbon cycles, including their physical, biological, and geological components.

Integrating recommendations from >40 OceanObs19 community strategy papers & >400 authors

SCOR WG Member	Institution
Meghan Cronin*	NOAA Pacific Marine Environmental Laboratory, US
Sebastiaan Swart*	University of Gothenburg, Sweden
Nadia Pinardi	University of Bologna, Italy
R. Venkatesan	National Institute of Ocean Technology, India
Phil Browne ^	ECMWF, UK
Warren Joubert ^	South African Weather Service, South Africa
Ute Schuster	University of Exeter, UK
Christa Marandino	Geomar, Germany
Shuangling CHEN ^	Second Institute of Oceanography, China
Clarissa Anderson	Scripps Institution of Oceanography, US
Jim Edson	Woods Hole Oceanographic Institution, US
Zhaohui CHEN	Ocean University of China, China
Juliet Hermes	South African Environmental Observation Network, South Africa
Fabrice Ardhuin	University Brest, CNRS, IRD, Ifremer, LOPS, IUEM, France
Oscar Alves	Bureau of Meteorology, Australia
Hiroyuki Tomita	Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Japan
* Cochairs ^ Early Career	

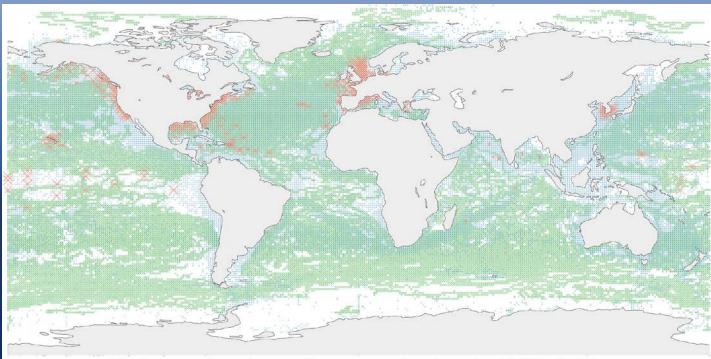
OASIS SCOR WG #162 DELIVERABLES:

- 1. Consolidated recommendation report (TOR #1; 6-months).
 - a. OASIS "Programme" for UN Decade Call for Action (due Jan 15, 2021)
 - b. OASIS "Ocean Shots" for Ocean Decade US Call (due Dec 1, 2020)
 - c. Consolidated 0019 0ASIS Recommendations Report
- 2. Observing Air-Sea Interaction Strategy publication (TOR #1-6; 36-months)
- 3. Best practice papers (TOR #2-5; 18-36-months)
- 4. Air-sea flux toolbox (TOR #2, 4-6; 12-36-months)
- 5. Air-sea flux curriculum (TOR #2, 4-6; 12-36-months)
- 6. Website, webinars and newsletter (TOR #1-6; Ongoing)

Air-sea exchanges of energy, moisture, and gases drive and modulate the Earth's weather and climate, influencing life, including our own. These air-sea interactions fuel the hydrological cycle and affect precipitation across the globe. Air-sea interactions affect the distribution of carbon dioxide between the atmosphere and ocean, how seawater flows and winds blow, and how pollutants floating on the ocean surface move — information critical to policymakers, industry, and civil society.

The Observing Air-Sea Interactions Strategy (OASIS) PROGRAMME will provide observational-based knowledge to fundamentally improve weather, climate and ocean prediction, promote healthy oceans, the blue economy, and sustainable food and energy.

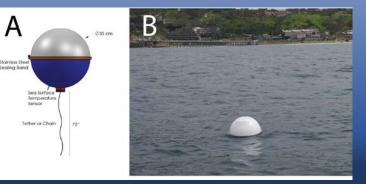
-- Summary Statement for the UN Ocean Decade OASIS Programme proposal


OASIS partnerships for implementing Programme

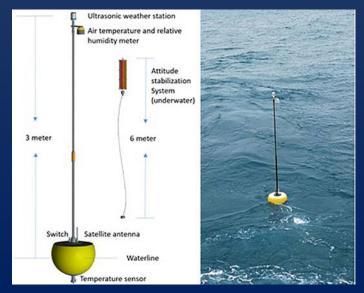
Partner Organization	Role of Partner in OASIS Programme	Point of Contact	Contact Info
GOOS Ocean Observations Physics and Climate (OOPC) panel	Help coordinate & integrate air-sea interaction observations within the GOOS for physics and climate	Sabrina Speich & Weidong Yu (co-chairs)	sabrina.speich@lmd.ipsl.fr, yuwd@mail.sysu.edu.cn
GOOS BGC panel / International Ocean Carbon Coordination Project (IOCCP)	Help coordinate & integrate biogeochemical air-sea interaction and carbon flux observations within the GOOS	Kim Currie (co-Chair), Véronique Garçon (co-chair), Rik Wanninkhof (former member)	Kim.Currie@niwa.co.nz, veronique.garcon.legos@gmail.com Rik.Wanninkhof@noaa.gov
GOOS Biology-Ecosystem panel	Help coordinate & integrate OASIS biological and ecosystem observations within the GOOS	Frank Muller-Karger (member), Lavenia Ratnarajah (international project officer)	carib@usf.edu, L.ratnarajah@unesco.org
Ocean Best Practice Systems	Help formalize ocean best practices needed for high-quality observations and interoperability within the OASIS network	Jay Pearlman (co-chair)	jay.pearlman@fourbridges.org
CoastalPredict	Help bridge open ocean and coastal OASIS observations with stakeholders	Nadia Pinardi (co-chair)	nadia.pinardi@unibo.it
Marine Life 2030	Help design and integrate biological and ecosystem observations within the OASIS network	Frank Muller-Karger (co-chair)	carib@usf.edu
Deep Ocean Observing Strategy (DOOS)	Help connect surface OASIS observations with deep ocean observations and processes to inform interaction of the surface and deep ocean (e.g. GHG and elemental fluxes, animal migrations, etc.)	Lisa Levin (co-chair)	llevin@ucsd.edu
Ocean Corps	Help develop OASIS knowledge partners and users in developing countries	Brian Arbic (co-chair)	arbic@umich.edu
EquiSea	Help develop resources and build capacity for OASIS activities in developing countries	Alexis Valauri-Orton (co-chair)	avalauriorton@oceanfdn.org
Consortium for Ocean Leadership	Provides administration and communication support (see airseaobs.org)	Sheri Schwarz (Program Associate)	sschwartz@oceanleadership.org
NSF Regional Coordination Network	Help connect to OceanObs19 community recommendations for ocean observing in 2030	Jay Pearlman (co-chair)	jay.pearlman@fourbridges.org

EXTRA Slide

OceanObs'19 Recommendation: Create an Integrated Surface Ocean Observing System



Surface marine observations transmitted on the GTS in 2018


Ships (+)Drifting buoys (x)Moored buoys (*)Symbol size indicates number of days in 2018 when the 1°x1° cell was observed
from ·: 30 days or less, toX: 335 days or more

Centurioni et al. (2019) "Global in situ Observations of Essential Climate and Ocean Variables at the Air-Sea Interface"

New technology for measuring directional waves

... and meteorological variables

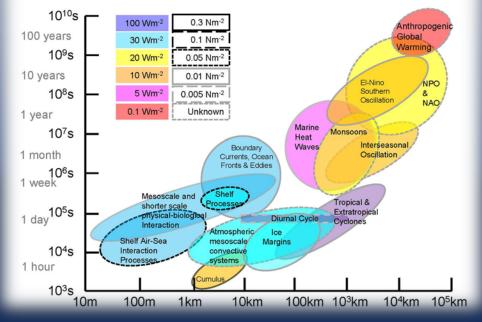
To predict weather and climate influenced by the ocean, we must accurately resolve air-sea heat fluxes

$10^{10}s$ 100 Wm⁻² 0.3 Nm-2 nthropoger 100 years 30 Wm-2 0.1 Nm-2 Warmin $10^{9}s$ 20 Wm-2 0.05 Nm⁻² 10 vears 10 Wm-2 0.01 Nm⁻ El-Nino NPO Southern $10^{8}s$ 5 Wm⁻² 0.005 Nm⁻² Oscillation NAO 0.1 Wm⁻² Unknown 1 year Marine 10⁷s Monsoon Heat Interseasonal Waves Boundary 1 month Oscillation Currents, Ocean Fronts & Eddies 10⁶s 1 week Mesoscale and Tropical & 10⁵s 105 shorter sca Extratropica **Diurnal Cycle** Cyclones Atmospheric Ice Shelf Air-Sea Margin 10^4 s convective systems 1 hour umulu $10^{3}s$ 100km 10³km 10⁴km 10⁵km 100m 1km 10m 10km

Flux Accuracies and Processes

Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"

How accurate? What resolution? Where are these observations needed? How can this be done?


An Observing Air-Sea Interactions Strategy (OASIS) for 2030

OASIS Decade Outcomes

OASIS observations will lead to improved prediction of the ocean's influence on global weather and climate on timescales of days-seasons-years \rightarrow <u>"A predictable</u> <u>ocean" & "a safe ocean"</u>

OASIS observations will lead to improved quantification of air-sea carbon exchange, ocean acidification, oceanic deoxygenation, and nutrient gradients $\rightarrow \underline{A}$ <u>healthy & resilient ocean" & "a sustainable productive</u> <u>ocean"</u>

Flux Accuracies and Processes

OASIS will improve understanding of oceanic and atmospheric processes and feedbacks that modulate surface fluxes of energy, moisture and carbon dioxide, and that interact with the ecosystem \rightarrow <u>"A healthy & resilient ocean", "a sustainable productive ocean",</u> <u>"a predictable ocean", "a clean ocean", "an accessible ocean", and an "inspiring ocean"</u>

To predict weather and climate influenced by the ocean, we must accurately resolve air-sea heat fluxes. For global coverage of air-sea heat fluxes, we must:

Flux EOV/E	V 2018 2019 2020 2021 2022 2023 2024 2025 2026	2027 2028 2029 2030
Bulk S	ST Partially met	Adequate
Skin Temperat	re Partially met	Adequate (1
Wind Speed and Directi	n Partially met	Adequate
Air Temperat	re Not met	Adequate
Humid	ty Not met	Adequate
Bulk Surface Curre	ts Partially met	Adequate
Skin Surface Curre	ts Not met	Adequate
Surface Solar Radiat	On Partially met	Adequate (2
Surface Longwave Radiat	on Partially met	Adequate
Albe	DO Partially met	Met
Sea St	te Requirement Unknown	Requirement Known
	Requirement not met / inadequate Requirement partially met / threshold	

Requirement adequately met / breakthrough

Requirement fully met / ideal goal

Optimize satellite-based boundary layer obs for near-surface air temperature & humidity, Tskin, & ocean wind stress;

Expand the global network of *in situ* air-sea interaction observations

Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"