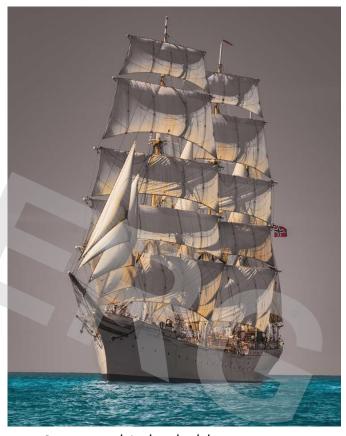


Benefits of advanced digital infrastructure for meteorological and oceanographic data collection from connected vessels

September 13th, 2020 WMO, IOC UNESCO, GOOS/OCG **Ship Observations Team Eleventh Session** Virtual Session, 13-16 September 2021

<u>Peer Fietzek</u>, Snr. Business Dev. Mngr. Ocean Science Tonny Algrøy, Sales Director Underwater Science Arne Johan Hestnes, Director Digital Technology



Outline

- The VOS Scheme Value, Scope and Extend, Motivation
- Digital Transformation of the Maritime Industry Merchant Fleet Automation
- Cloud Services and Maritime Industry
- Facts and Figures
- Blue Insight The Digital Ocean Toolbox
- Statsraad Lehmkuhl Advanced Digital Infrastructure
- Summary and Outlook

Statsraad Lehmkuhl (picture source)

The Voluntary Observing Ship (VOS) Scheme

4 ALBERT EMBANKMENT LONDON SE1 7SR

elephone: +44 (0)20 7735 7611 Fax: +44 (0)20 7587 3210

MSC.1/Circ.1293/Rev.1 25 May 2018

- Value importance of the data
 - awareness and forecasting of (extreme) weather events
 - numerical weather predictions (NWP) depend on observational data
 - Increased safety of life at sea for ships (commercial and leisure), their crew and cargo
 - Improved forecasts support better critical decisions and avoidance of extreme weather locations
 - Valuable data source for climate studies
 - VOS are the only source of ground truth over much of the oceans for some parameters
- Scope and Extend Limited number of vessels collecting and transmitting automatically
 - shipping industry: participating in VOS helps to improve warnings and forecasts
 - Involvement as a standard procedure emerging
 - Many parameters are measured; already **additional pressure observations** would

make a great difference

Air pressure	Wind	Relative humidity
Waves	Sea ice	Air and Sea temperature
Visibility	Rainfall	Cloud cover

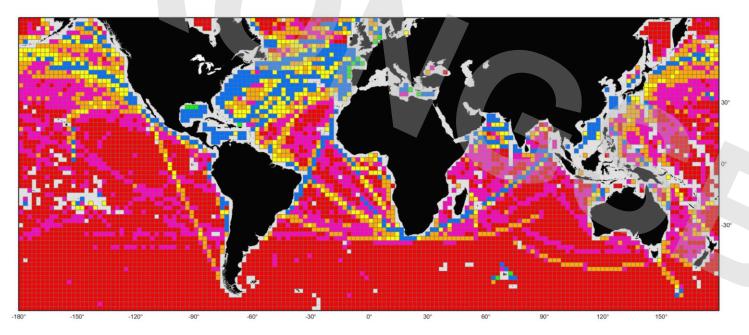
PARTICIPATION IN THE WMO VOLUNTARY OBSERVING SHIPS SCHEME

This Photo by Unknown Author is licensed under <u>CC BY-SA</u>

This Photo by Unknown Author is licensed under CC BY-SA-NC

This Photo by Unknown
Author is licensed
under CC BY-ND

~2000 regularly reporting VOS vessels (2019)


~1800 with air pressure measurements

~300 with automated measuring stations, known instruments and metadata (→ GTS)

The VOS Scheme – Motivation

Spatial distribution of air pressure data reveals **observational gaps**More measurements at higher spatial and temporal resolution required

Ship Observations Team

VOS Data Coverage between 60° North and 60° South

October 2020

Near surface air pressure requirements for global Numerical Weather Prediction (Threshold value for WMO-OSCAR Requirement #251 in this grid: 15; breakthrough: 750)

Generated by www.ocean-ops.org. 11/11/2020

- WMO Observing Systems Capability Analysis and Review Tool (OSCAR) <u>requirements for air</u> pressure measurements for global NWP:
 - Threshold condition of observations (achieved for approx. green, blue, yellow areas in the map)
 every 500 km every 12 h
 - Breakthrough target of observations (approx. green areas)
 every 100 km taken every 6 h
 - Goal for observations
 every 15 km taken every 60 min
 - For high-resolution NWP, the ambitious breakthrough goal is
 every 10 km taken every 60 min

KONGSBERG

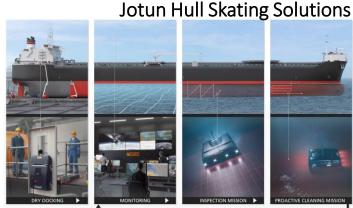
Digital Transformation of the Maritime Industry – Merchant Fleet Automation

Remote Operations & Logistic solutions

Autonomous vessels & smart ports

(Maritime 4.0")

40 000 (?)


0-3 years

1-5 years

5+ years

10+ years

- **OPEX reductions** by digital solutions for the maritime industry related to, e.g.:
 - Fuel and energy management, port charges, insurance, repair, personnel
- Improving existing platforms with new tech and in the long-term autonomous shipping → more efficient, safer and sustainable operations (e.g. CO₂ emission reductions)

Cloud Services and Maritime Industry

One open digital ecosystem Kognifai **FUEL OPTIMIZATION**

LOGISTICS

WEATHER

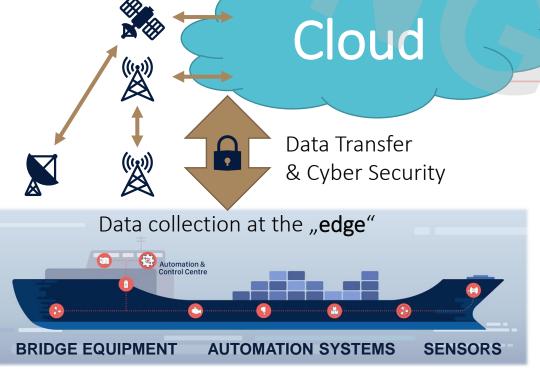
MAINTENANCE

FLEET MANAGEMENT

SAFETY

MARKETPLACE

ROUTE OPTIMIZATION SERVICES


ENERGY MANAGEMENT

DOCUMENT HANDLING

APPLICATIONS VISUALIZATION ANALYSIS

API

- Common system helps stakeholders to scale and grow the market
- Cyber security is essential (→ single point of contact)
 - One integrated system no data silos
- Automated, no manual data gathering
- Full ownership and control of the data

National Meteorology and **Hydrology** Services

(NMHS)

ERDDAP server WMO's Global Telecomm. **System** (GTS)

. . .

Facts and Figures

Kongsberg Maritime – The Full Picture - From Bridge to Propeller

- > 33 000 vessels with KM equipment
- ~ 10 000 vessels with KM automation and control systems (>30 years experience)
- > 10 years experience with remote sensing, cyber security and information management solutions
- onboard >11 000 vessels each year; global reach and service

- *Kognifai* open digital ecosystem; 3rd party services
- Vessel Insight data collection and in situ/cloud analysis; > 300 developers;
 ~200 vessels now, goal: 2 000 vessels within 3 years

Complete solutions for e.g. vessel operation, hull performance and/or applications such as bathymetric measurements

Blue Insight – The Digital Ocean Toolbox

Seamless acquisition, fusion, processing, visualization, contextualization and management of ocean data

Core

- Cloud framework & Cyber security
- BI Dashboard
- Software deployment

- Data storage & Data management
 - Advanced data accessibility and selection based on meta data

Sensor Fusion (onboard)

- Receive data from sensors& databases
- **Distribute** to cloud
- Interface between sensors and Remote & View

Ocean View

- Web interface for visualizing real time and historical sensor data
- Visualize and navigate in data from multiple sensors
- Geographical background maps
- Variety of 2D & 3D views

Data Forwarder

- Conversion of data into desired formats
- Automatic forward selected data to external (cloud) systems and servers or position information to AIS servers

- Data QC/QA
- Automated data analysis
- Machine Learning & Al

Core

Science Analytics

Remote

- Web interface for **remote control** of EK/EM systems
- EK **system status** information

Others...

First Blue Insight Projects

- One Ocean (2020+) https://oneoceanexpedition.com/
 - Project focus on science AND visualization/communication
 - EK80 was installed, requires (1) sensor fusion, (2) remote, (3) ocean view and (4) data forwarder
 - Covers collection and distribution of KM and 3rd party sensor data
- Glider II lead: Akvaplan-niva (2021+) https://www.akvaplan.niva.no/en/projects-networks/glider/
 - Fleet of different platforms: Unmanned Surface Vehicles (USVs), underwater glider AUVs
 - Focus on EK80 and other oceanographic data for ecosystem monitoring, situational awareness, contextualization and decision support
 - Current focus on real time visualization improvements (vehicles, data, environment)
 - Further improvements planned ref. data flow/quality/handling/sharing
- CRIMAC lead: IMR (2021+) https://crimac.no/en/projects/crimac
 - 2 AUV's and 2 USV's + Blue Insight solution
 - Benefits from sensor fusion, remote, ocean view and data forwarder functionality
 - Additional functionality required: Automatic **classification** of water column targets (→ machine learning)

Blue Insight supports and facilitates an ambitions undertaking

- The One Ocean Circumnavigation (2021-2023)
- Part of the Decade of Ocean Sciences for Sustainable Development
 - → create attention and share knowledge
- Connected vessel with an extensive list of measurement parameters included in the digital infrastructure solution such as:
 - Meteorological: air temperature, relative humidity, air pressure, wind
 - Wave measurements
 - FerryBox surface water flow-through system with water temperature, oxygen, turbidity, etc.
 - pCO₂ system
 - Echosounder, incl. onboard processing for biomass and ecosystem inf.

Advanced Digital Infrastructure – from *onboard processing* to *smart data forwarding*

Configuration Remote control Algorithms

Vessel

Measurements

Pos., Autom., Ship systems

Met Sensors

Echosounder

FerryBox, pCO₂, Waves

Onboard processing

Visualization

Raw and Processed data

Models

Prepared algorithms

Raw and Processed data

Automated distribution

Datacenters

e.g. with met.no (json

format)

and

Storage at various data

centers

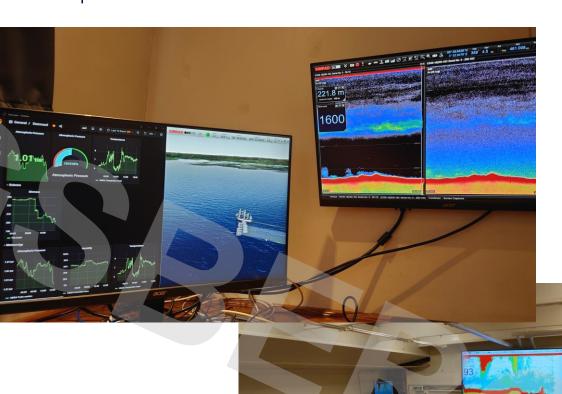
e.g. NMDC

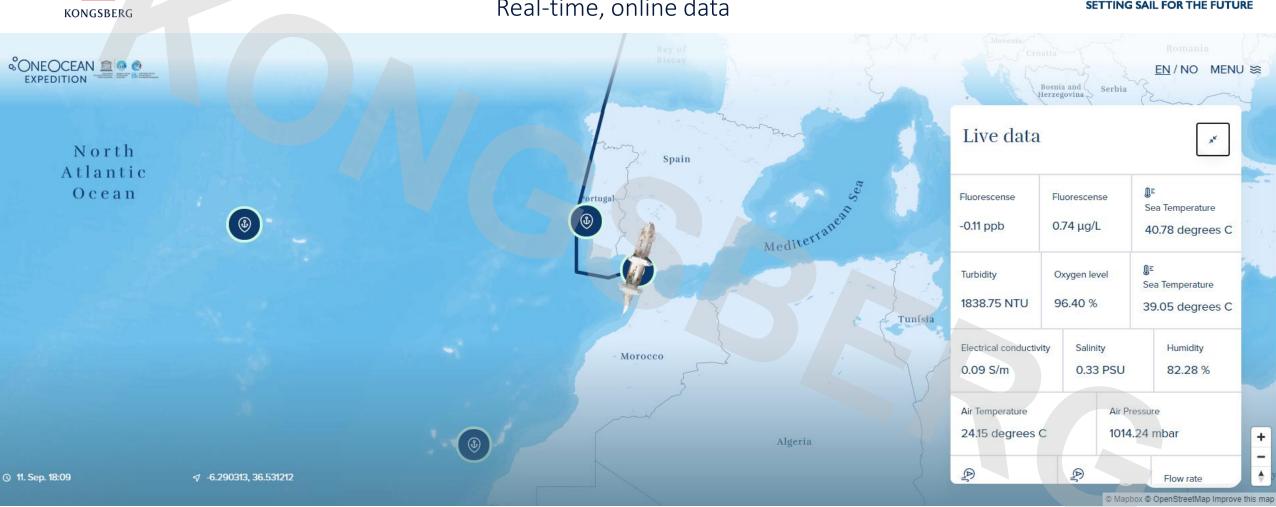
Cloud Processing

Visualization

Sensor control




Onboard impressions



SETTING SAIL FOR THE FUTURE

Real-time, online data

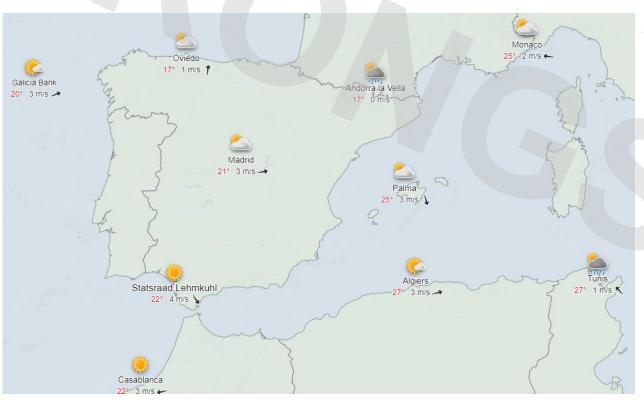
Link: https://oneoceanexpedition.com/?dashboard=true

KONGSBERG

Statsraad Lehmkuhl

Statsraad Lehmkuhl &

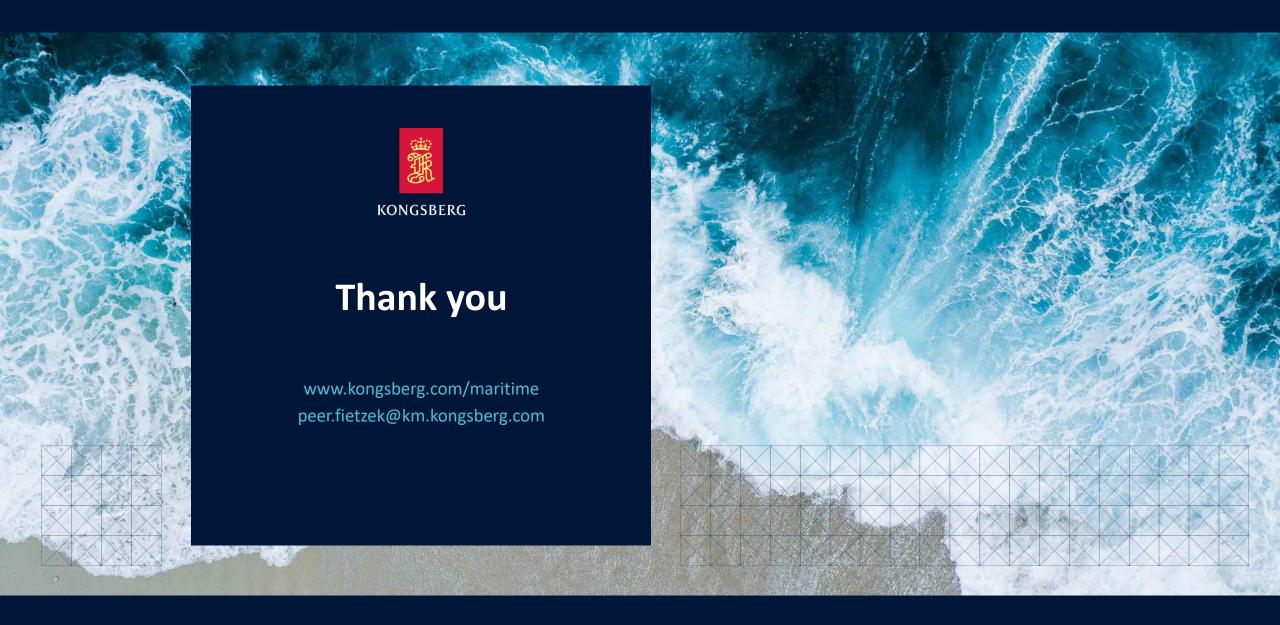
Ocean (Norway), elevation 0 m


Meteorological online data and forecasting

Served by the Norwegian Meteorological Institute and NRK

Search

Dew Point Temperature - Temperature °C - Dew point °C **Precipitation** Wind Pressure 1010 1000 Humidity


Link: https://www.yr.no/en/forecast/daily-table/5- 20931/Norway/Ocean/Statsraad%20Lehmkuhl

Summary and Outlook

- The favorable ecosystem of connected vessels (Kognifai, Vessel Insight) is evolving and growing
- Simplifies and provides good conditions for scalable, cost-efficient and effective data collection
- New digital toolbox, Blue Insight, focuses on all activities related to oceanographic and meteorological data
- Open for different platforms and parameters such as **standard metocean** (e.g. air pressure little effort/large effect) to more sophisticated **ocean observing** incl. in situ/cloud data processing (e.g. echosounders)
- Metocean data collection on connected vessels can meet the Automated Weather Station (AWS) demands (quality, protocols, etc.) while benefitting from, e.g.:
 - synergetic use of vessel systems already connected (GPS, navigation parameters, comm. devices, storage, etc.)
 - automated processing and analysis in the cloud
- KM's global market presence (thousands of vessels) and established technology (full solution) can play a key role in significantly enlarging VOS scheme data collection

Open and ready to discuss ambitious **demonstration project** ideas, i.e., connecting existing VOSs to Blue Insight or accessing new VOSs with installation/equipment/BI

