

Quantum Kelvin and its Application in Ocean

FENG Xiaojuan

Division of Thermophysics

National Institute of Metrology, China

Dec 15,2021 Online Virtual Conference

• the redefinition of kelvin and its influences

thermodynamic temperature methods

Introduction

- kelvin
- **the unit of thermodynamic temperature**
- one of seven SI basic units
- Temperature is one of the most important properties of ocean

Climate change indicator

https://www.seatemperature.com

www.ncdc.noaa.gov/data-access/marineoceandata/extended-reconstructed-sea-surfacetemperature-ersst.

- 1880-2020
- 2-3 K increasing
- change rainfall patterns around the globe

Measurements and fundamentals of temperature

The first thermometer Freezing/boiling point of water

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$

10

13th CGPM

1K

1/273.16 of the thermodynamic temperature of triple point of water

"The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant *k* to be 1.380 649 \times 10⁻²³ when expressed in the unit J K⁻¹, which is equal to kg m² s⁻² K⁻¹, where the kilogram, metre and second are defined in terms of *h*, *c* and Δv Cs."

- May 20th, 2019
- Fundamentally better

 has its statistical mechanics, thermodynamic temperature is a measure of the average thermal energy per degree of freedom in the system

□ *u*(*T*_{TPW})=0.1 mK

0

□ Has a very small effects on practical using **CAN NOT feel the change** □ ITS-90 will continue be used for quite a long time for its good consistence \Box ITS-XX based on new (*T*-*T*₉₀) measurements **Given Series Constraints** For extreme temperature range/environment, special

techniques could be

developed

SI Brochure – 9th edition (2019) – Appendix 2

20 May 2019

Mise en pratique for the definition of the kelvin in the SI

Consultative Committee for Thermometry

1. Introduction

The purpose of this *mise en pratique*, prepared by the Consultative Committee for Thermometry (CCT) of the International Committee for Weights and Measures (CIPM), is to indicate how the definition of the SI base unit, the kelvin, symbol K, may be realized in practice.

Redefinition of kelvin- applications in ocean

Redefinition of kelvin- applications in ocean

Practical on-site thermodynamic

temperature measurements for

ocean?

Small size thermometers

Large-scale temperature monitoring

Speed of sound
Refractive index
Dielectric constant
Doppler Broadening

✓ Stable

....

 \times Slow response

Speed of sound in sea water

D Relative method

Quantum effects usually occurs at low temperature
In the ocean temperature range, one of the possible approaches is NV centers in diamond sensing

The precise measurement physical quantity of NV center is determined by its Hamiltonian (*H*) :

$$H = DS_z^2 + E(S_x^2 - S_y^2) + g_s \mu_B B \cdot S$$

The spin - spin interaction
between the unpaired
electrons caused by the
zero field splitting DThe influence of
energy level change
caused by stress (E)
and electric fieldThe effect of
external magnetic
field (B)

Temperature

Stress, electric field

Magnetic field

In 1997, Wrachtup's research group in Germany first used confocal system to study a single NV center of diamond,

and obtained optically detected magnetic resonance(ODMR) signal of a single NV center at room temperature.

S is the spin angular momentum, S_x , S_y , S_z is its component in x, y and z axes. g_s is the Lande factor, and μ_B is the Bohr magneton.

V, M, Acosta, et al. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Physical Review Letters, 2010.

Kucsko G , Maurer P C , Yao N Y , et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460):54-58.

Liu, G. Q., et al. "Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin." Nature Communications 10.1(2019).

- NV center is a new kind quantum sensing material for temperature, electric, magnetic and pressure measurement.
 - ✓ Diamond: very stable
 - ✓ Multiple physical parameters sensing
 - ✓ Size: nm scale to mm scale (quick response)
 - ✓ Good S/N and sensitivity (mK)
 - Optical fiber probe coupled with NV centers makes it have the potential of integration

Could be used in ocean temperature sensing in the future

Temperature Dependence of Nitrogen-Vacancy Center Ensembles in Diamond Based on an Optical Fiber. OuYang K-C et al. (submitted to Optical Express)

- The redefinition of kelvin DOES NOT have an obvious effect on practical temperature measurement of ocean
- In the future, the revision of ITS could lead a better understanding of practical temperature scale closer to physical truth
- Practical thermodynamic temperature measurement could provide a stable temperature (no calibration) as far as the techniques are developed
- New quantum sensing technology such as NV center in diamond could also be used in ocean in the future

Sixth Marine Instrumentation Workshop for Asia-Pacific Region

Thank you very much for your attention!

fengxj@nim.ac.cn

