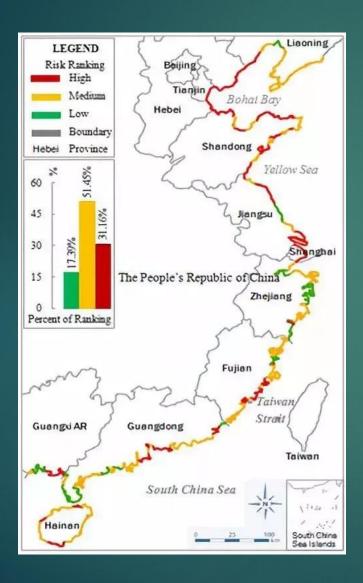
Metrological Test Technology of Marine Instruments in Ecology Monitoring

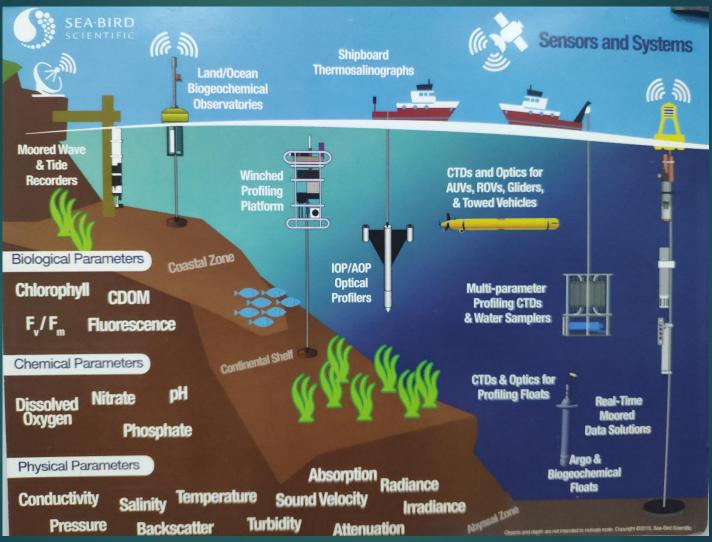

CHAOYING SHI

NATIONAL CENTER OF OCEAN STANDARDS AND METROLOGY

Contents

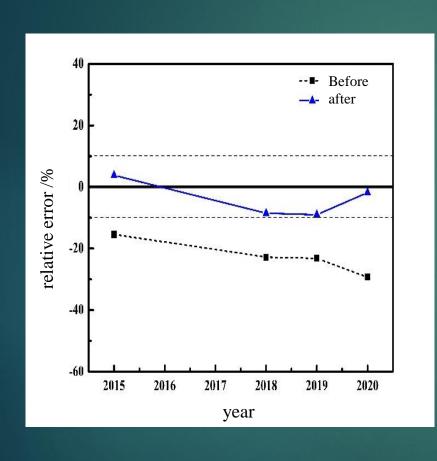
- > 1. Introduction
- > 2. Metrological Test Technology
- > 3. Standard Materials
- > 4. Research in future

1.Introduction

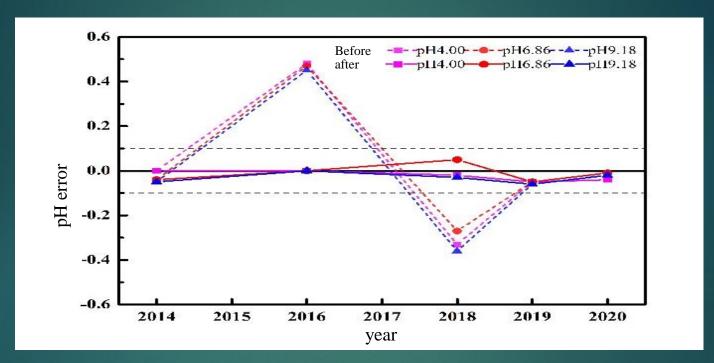

- ◆ Long coastline
- ◆ Rich in marine

resources

♦ Wide range of


ecological monitoring

Marine Instruments and Parameters in Ecology Monitoring


(From Seabird scientific)

Errors variations of turbidity sensors after calibration

- Calibration can effectively control the error of the sensors
- When the turbidity sensor is used at sea for a long time, its voltage value will drift with time which will cause large deviation

Errors variations of pH sensors after calibration

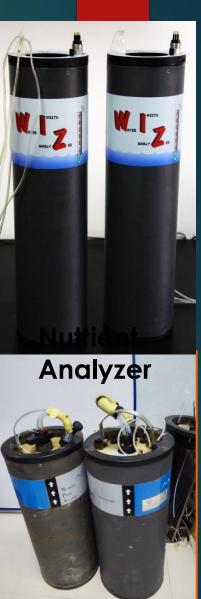
- After 2 years' long-term use on the sea, the pH error was far exceeded the maximum permissible error(MPE). Especially in 2016, the maximum error of initial indication reached 0.48.
- ➤ Properly planning the calibration frequency will help to improve the accuracy of the sensor.

It is important to calibrate the instrument in Ecology Monitoring

And

Regularly

2. Metrological Test Technology


Calibration and Testing services

- > Test for DO sensors
- calibration for pH sensors
- calibration for turbidity sensors
- > calibration for nutrient analyzers
 - Nitrate
 - Nitrite
 - Ammonium salt
 - Silicate
 - Phosphate

We have ever calibrated such instruments as follows

2.1 Test of DO sensors

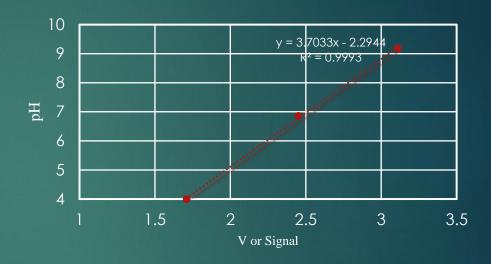
- ► Thermostatic bath: provide constant temperature environment
- **Seawater**: simulate marine environment
- ► High purity gases: change dissolved Oxygen in seawater
- ► Winkler Titrations: provide standard value of DO in seawater

Winkler Titrations

Quality titrator with automated endpoint detection.
Accurate dispenser

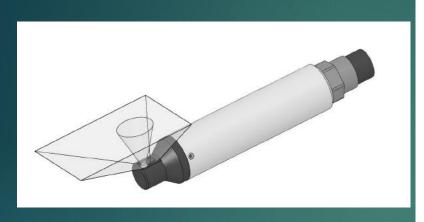
Quality, calibrated Reagent dispensers

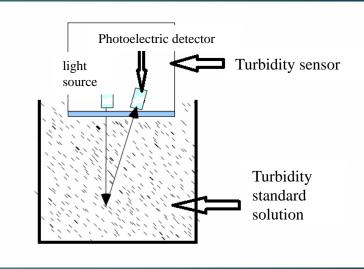
Keep samples dark at constant temperature, not cooler than the draw temperature.



2.2 Calibration of pH Sensors

- Thermostatic bath: provide constant temperature environment
- ▶ **pH standard buffer**: provide standard value
- thermometer: Detect temperature


Provide Calibration factors

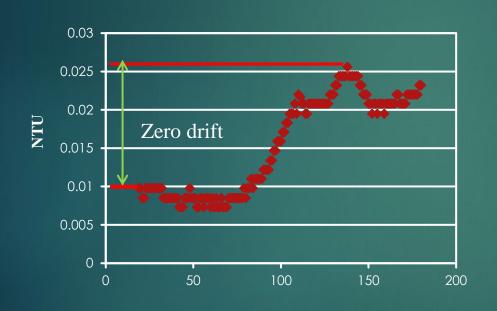


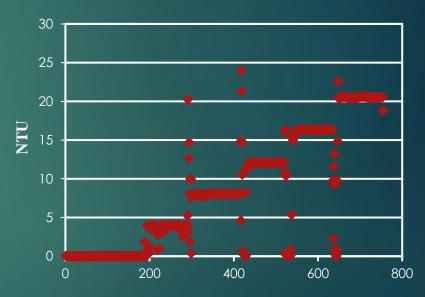
pH=7+ (Volt-Offset) / (1.98416*10-4*T*slope)

2.3 Calibration of Turbidity Sensors

Boundary effect

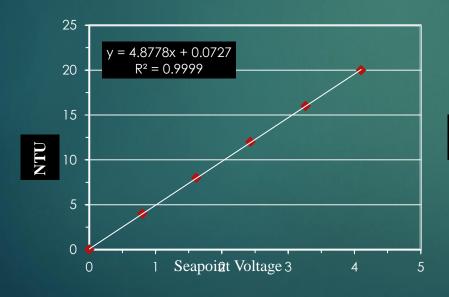
Lateral luminescence

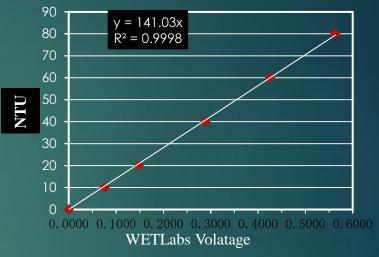

Vertical luminescence

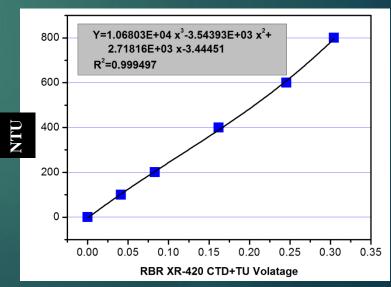

- The containers in the laboratory will have a boundary effect on optical sensors such as turbidity.
- ➤ It is necessary to control the size of the container, which can overcome the boundary effect without wasting the standard solution.

2.3 Calibration of Turbidity Sensors

Zero drift: the maximum amplitude to the range

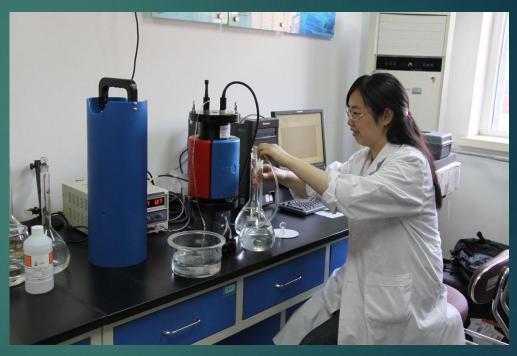

Indication Error and Repeatability





2.3 Calibration of Turbidity Sensors

- Measuring range of turbidity sensors are respectively (0~25)NTU, (0~125)NTU, (0~500)NTU, (0~1000)NTU ,etc.
- When measuring range is greater than 750, it is a curve.
- When measuring range is less than 750, it is a straight line.



2.3 Calibration of Seawater Nutrients Analyzers

- **► Temperature effect**: ignore
- Nutrient standard solution: provide standard value

3. Standard Materials

For chemical parameter testing, standard material is also a special and effective equipment.

- Salinity Standard Seawater
- ► Seawater pH_T Standard material
- ► Active Phosphate Standard material in seawater

3.1 Salinity Standard Seawater

Name	Number	Salinity	Uncertainty
China Primary Standard Seawater	GBW 13150	35	<i>U</i> =0.001 (<i>k</i> =2)
China Series Standard Seawater	GBW (E) 130011	5, 20, 30, 35, 40	<i>U</i> =0.003 (<i>k</i> =2)

3.1 Salinity Standard Seawater

Comparison results between China Primary standard seawater and International Standard Seawater

Batch of China Primary Standard Seawater	Batch of International Standard Seawater	Absolute value of salinity difference	En
P7	D152	0	0
P8	P153	2	0.14
P9	P155	4	0.28
P10		1	0.07
P11		2	0.14
P12		2	0.14
P13	P158	0	0
P14	P160	0	0
P15		6	0.42
P16		4	0.28
P17	D161	3	0.21
P18	P161	2	0.14

3.2 Seawater pH_T Standard material

▶ pH_T in seawater is defined as the pH scale of total hydrogen ion concentration of seawater.

$$[H^{+}] = [H^{+}]_{F} (1 + S_{T}/K_{s})$$

$$\approx [H^{+}]_{F} + [HSO_{4}^{-}]$$

$$pH = -\log_{10} (\frac{[H^{+}]}{mol \ kg^{-1}_{solution}})$$

Used: Seawater acidification

Study on marine carbon cycle

Calibration of seawater pH Analyzers based on Spectrophotometry

3.2 Seawater pH_T Standard material

➤ Seawater pH standard material is based on **artificial seawater** and Tris as buffer reagent. It is determined by potentiometric methods with hydrogen electrode silver / silver chloride electrode in non-liquid junction cell.

$$Pt(s)|_{H_2(g, p^0)}|_{BH^+}$$
 and B in seawater $AgC1(s)|_{Ag(s)}|_{Pt(s)}$

Standard material (S=35)

0.72252

Total

Cl

0.38766

0.01058

0.10948

0.02150

0.04000


0.56922

oncentration

cell potential:	Component	Ionic Strength	Co
$E = E^{\circ} - \left(\frac{RT}{F}\right) \ln \left\{\frac{m(\mathrm{H}^{+}) m(\mathrm{Cl}^{-})}{(m^{\circ})^{2}}\right\} - \left(\frac{2RT}{F}\right) \ln \gamma_{\pm} (\mathrm{HCl})$	NaCl	0.77531	
After derivation	$\mathrm{Na_{2}SO_{4}}$	0.17562	
	KCl	0.02116	
$mH = \frac{1}{100} \int m^*(H^+) \left(E - E_m^* \right) \int m(Cl^-) \left(m(Cl^-) \right)$	MgCl_2	0.32844	
$pH_{m} = -\log\left\{\frac{m^{*}(H^{+})}{m^{\circ}}\right\} = \frac{E - E_{m}^{*}}{RT \ln 10/F} + \log\left\{\frac{m(Cl^{-})}{m^{\circ}}\right\}$	CaCl ₂	0.06450	
$pH_T = pH_m - \log(1 - 0.00106S)$	tris (C4H11NO3)		
(From Dickson A.G, 1998)	tris·HCl	0.08000	

3.2 Seawater pH_T Standard material

Name	Number	Value		TT
		T(°C)	pH_T	Uncertainty
G		10	8.581	
Seawater pH _T		15	8.414	
Standard	GBW(E)	20	8.250	U=0.005,
material (Salinity 35)	130705	25	8.092	k=2
		30	7.937	
		35	7.785	
Seawater pH _T	* 1	10	8.566	
Standard		15	8.401	
material	GBW(E)	20	8.241	U=0.005,
(Salinity 25)	130704	25	8.086	k=2
		30	7.934	
		35	7.786	

Seawater pH_T Standard material

3.3 Active Phosphate Standard material in seawater

3.3 Active Phosphate Standard material in seawater

Name	Concentration (µmol/L)	Uncertainty (μmol/L)
	0.50	0.05
Active Phosphate Standard material in seawater	1.00	0.05
	2.00	0.10
	4.00	0.14

Spectrophotometric determination

4. Research in future

Total Chlorophyll Alkalinity Total To be Dissolved CDOM Inorganic continued... Carbon Radiance Fluorescence

Thanks for listening!