

Intergovernmental Oceanographic Commission

"MULTIPLE OCEAN STRESSORS AND INVASIVE ALIEN SPECIES: INTRODUCTION AND INSIGHT INTO THE CCLME"

Kick-off meeting of the project Invasive alien species and other ocean stressors: Furthering the scientific knowledge and capacity basis in the Canary Current Large Marine Ecosystem

VENUE: ON-LINE MEETING (MICROSOFT TEAMS)

DATE: 24 FEBRUARY 2022 TIMES INDICATED IN CET (UTC+1)

INTRODUCTION TO MULTIPLE OCEAN **STRESSORS**

Sam Dupont Kirsten Isensee and Philip Boyd

Key resource:

Multiple Ocean Stressors: a scientific summary for policy makers

Understanding how mul^{tu}e stressors alter marine ecosystems at all locations and how marine life is essential for a healthy, resilient, predictable sustainable ocean

Editors

Philip W. Boyd, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia Sam Dupont, University of Gothenburg, Fiskebäcksil, Sweden nsee, Intergovernmental Oceanographic Commission of UNESCO, Paris, France

Goal

Healthy, resilient, productive, diverse sustianbly managed ocean, whose future we can predict

Human threats on the ocean

Multiple stressors

Different interacting categories

- ✓ *Habitat destruction (physical, pollution)*
- ✓ *Over-exploitation of resources (e.g. fishing)*
- ✓ *Movement of species (invasions, diseases)*
- ✓ *Global changes (climate change, ocean acidification, deoxygenation, etc.)*

✓ *Interactions*

Local vs Global **Natural** vs. Foreign Abiotic vs. Biotic

What shall we do?

Policy action

Implementation of dadaption and mitigation strategies addressing the effects of multiple ocean stressors

Healthy, resilient, productive, diverse sustianbly managed ocean, whose future we can predict

Adaptation and mitigation strategies to combat the impacts of multiple stressors

Implementation of adaption and mitigation strategies addressing the effects of multiple ocean stressors

Understanding biological response

Taking into account locally specific combinations of stressors over time and space

Cataloguing stressors exposure

Identification of key stressors at all **locations**

Identification of temporal variability and their sources

Identify priorities

Identify priorities

Strategy to identify priorities

- Exposure
- Effects
- Solution

availability

Different all every location

Exposure

Hoegh-Guldberg & Bruno 2010 Science

Paracelsus « *Dosis facit venenum* »

Need for local monitoring

Take home messages

✓ Different combination of stressors at each location

Foreign vs. **Natural stressors**

Effects – What is a stressor?

o *Stressor*

A pressure that causes a quantifiable negative effect on an organism, process or community.

o *Driver*

A pressure that causes a quantifiable change (positive or negative) an organism, process or community.

o *Stress*

A measurable response that is deleterious to an organism, process or community.

Biological thresholds different from chemical thresholds

A driver can become a stressor

Within the present range of variability **NOT ocean acidification** NOT stressor / No stress (plasticity)

Outside the present range of variability

ocean acidification stressor / stress

Global Change Biology

Global Change Biology (2013), doi: 10.1111/gcb.12276

Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH

NARIMANE DOREY*, PAULINE LANÇON*, MIKE THORNDYKE† and SAM DUPONT* *Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences - Kristineberg, University of Gothenburg, Fiskebäckskil 45178, Sweden, † The Royal Swedish Academy of Sciences, The Sven Lovén Centre for Marine Sciences -Kristineberg, Fiskebäckskil 45178, Sweden

Biological response is locally dependent

Population 1 Population 2

tonsa and stress responses to high _PCO₂ conditions Victor M. Aguilera^{1,2}, Cristian A. Vargas^{2,3,4}, Marco A. Lardies⁴⁵ & María J. Poupin⁶ Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile lenium Institute of Oceanography, Universidad de Concepción, Concepción, Chil .
3 Aquatic Ecosystem Functioning Lab (LAFE), Department of Aquatic Systems, Faculty of Environ
Center EULA Chile, Universidad de Concepción, Concepción, Chile Lenter sua a une, unwessao de Conegoco, Conegoon, Cnie
4. Center for the Study of Midtigle-drivers on Marine Socio Ecological Systems (MUSELS), Universidad de Conegocín, Concepción, Chile
5. Departamento de Clencias, Facul 4 Center for the Study of Multiple-drive báñez, Santiago, Chile ria, Facultad de Ingeniería y Ciencias, Center of Applied Ecology and Sustainability (CAPES), Uni 6 Laboratorio de Bioing
Ibanez, Santiago, Chile Abstract Environmental transitions leading to spatial physical-chemical gradients are of

Adaptive variability to low-pH river discharges in Acartia

ecological and evolutionary interest because they are able to induce variations is phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges .
Victor M. Agulera, Instituto de Ciencias may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Fernitin] in the neitic copepod Acartia tonsa facing changes in the marine chemist Iniversidad de Antofagasta, Avenida versidad de Antofagasta 02800, P.O. E to ocean addification (OA). These responses were tested in copepod populations inhibiting two environments with contrasting carbonate system parameters in estuaring were invariant such as the Southern Pacific Ocean, and a E-mail: victor.aguilera@uantof. Accepted: 8 February 201 pressure of CO₂ (_JCO₂ 1200 ppm). Adaptive variability was a determining fac doi: 10.1111/maec.1228 pressure to vexy greater
the computer sequence sensor by an extending variability of cope
probe texponess. Thus, the food-rich but colder to maximize that the
desired compressed in such that the computer star conditions. higher than those of the coastal individuals. Indeed, expression of both th $mg \cos \theta$ and Ferritin genes in coastal copepods was significantly higher after accli-
 $Hip70$ and Ferritin genes in coastal copepods was significantly higher after accli-
mation to high pO_2 conditions. Along with other r confirm that adaptation to local fluctuations in seawater pH seems to play a sig $% \begin{minipage}{0.9\linewidth} \emph{a} & \emph{a} & \emph{b} \\ \emph{a} & \emph{b} & \emph{b} & \emph{c} \\ \emph{b} & \emph{c} & \emph{d} & \emph{d} \\ \emph{d} & \emph{d} & \emph{e} & \emph{e} \\ \emph{d} & \emph{d} & \emph{e} & \emph{e} \\ \emph{e} & \emph{d} & \emph{d} & \emph{e} \\ \emph{f} & \emph{e} & \emph{d} & \emph{e} \\ \emph{f} & \emph{f} & \emph$ detail as a potential tool for risk mitigation policies in coastal managemen

Marine Rology 37 (2016) 215-226 @ 2015 Blackwell Verlag GmbH

marine ecology

SHORT COMMUNICATION

Same species, different responses

Biological response is locally dependent

8.7

8,6

8.5

8,4

8,2

81

7.9

 $7,8$

H 8,3

Population 1 Population 2

Same species, different responses

Time

Victor M. Aguilera^{1,2}, Cristian A. Vargas^{2,3,4}, Marco A. Lardies⁴⁵ & María J. Poupin⁶ Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile nium Institute of Oceanography, Universidad de Concepción, Concepción, Chi Aquatic Ecosystem Functioning Lab (LAFE), Department of Aquatic Systems, Faculty of Env , conception, critic
Aarine Socio-Ecological Systems (MUSELS), 4 Center for the Study of Multiple-dri artamento de Ciencias, Facultad de Artes Liberales & Laboratorio de Bioingeniera, Facultad de Ingeniera y Ciencias, Universidad Adol báñez, Santiago, Chik 6 Laboratorio de Bioir
Ibañez, Santiago, Chik Abstract Environmental transitions leading to spatial physical-chemical gradients are o ecological and evolutionary interest because they are able to induce variations is phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges victor M. Aquilera, Instituto de Ciencia may drive divergent stress responses [ingestion rates (IR) and expression cares-related genes such as Heat shock protein 70 (H1p70) and Fernitin] in the neitic copeped Acartia tonsa facing changes in the matine chemistry a niversidad de Anto ersidad de Antofagasta 02800. to ocean acidification (OA). These responses were tested in copepod popula to voum accuration to contribute the contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an *in situ* and 96-h experimental incubation under conditions of E-mail: victor.aguilera@uantof. Accepted: 8 February 201 pressure of CO₂ (_JCO₂ 1200 ppm). Adaptive variability was a determining fac doi: 10.1111/maec.1228 peakes to so, poor 1 soo pinn). Naapare vantatos y was constrainely solved to the driving variability of copepods' responses. Thus, the food-sich but colder of anotonive entary induced a trait trade-off expressed as depre higher than those of the coastal individuals. Indeed, expression of both th

Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high _PCO₂ conditions

marine ecology

SHORT COMMUNICATION

inguist user the second constant constants, and construct the second second second second second second second
http://0 and Ferritin genes in coastal copepods was significantly higher after accli
mation to high _pCO₂ co confirm that adaptation to local fluctuations in seawater pH seems to play a sig nificant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should detail as a potential tool for risk mitigation policies in coastal managemen

 \rightarrow

phenotypic flexibility (Blanckenhorn 1997; Lardies et al Introduction 2008). Information concerning geographic variations is response to ocean addification (OA; Feely et al. 2004)
Caldeira & Wickett 2003) is critical because many mor ${\sf Geographically}$ widespread species must cope with environmental differences among habitats. This ability can, in principle, be achieved by genetic differentiation and/or phologic, life-history and metabolic traits show variatio Marine Roslogy 37 (2016) 215-226 @ 2015 Blackwell Verlag GmbH

Theory: adaptation drives sensitivity

 $($ μ atm $)$

Local adaptation

nature ecology & evolution

ANALYSIS PUBLISHED: 13 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 008

Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity

Cristian A. Vargas^{1,2,3*}, Nelson A. Lagos^{3,4}, Marco A. Lardies^{3,5}, Cristian Duarte^{3,6}, Patricio H. Manríquez⁷, Victor M. Aguilera^{2,8}, Bernardo Broitman^{3,7}, Steve Widdicombe⁹ and Sam Dupont¹⁰

Upper environmental $pCO₂$ drives sensitivity to ocean acidification in marine invertebrates

Cristian A. Vargas ^{® 1,2,3} ⊠, L. Antonio Cuevas ® ^{1,3}, Bernardo R. Broitman ® ^{3,4}, Valeska A. San Martin³, Nelson A. Lagos^{3,5}, Juan Diego Gaitán-Espitia[®] and Sam Dupont^{7,8}

The more you **deviate from today**, the more negative impact (stress is relative)

Take home messages

- ✓ Different combination of stressors at each location
- ✓ What defines a stressor is relative and depends also on each location

THE question

Multiple drivers/stressors (A, B, C, D, etc.)

What is the effect of A+B+C+D+etc.

Increased drivers = increased stress

Combined effects can change priority

Combined effects are complex

Additive

Synergism/Synergistic

Antagonistic

E.g. impact of temperature on mussels

Effect on growth:

 $+2C(A): +10\%$ $+4C$ (B): $+15\%$ $+6C (A+B)$: ?

E.g. impact of temperature on mussels

An increase by $2C = 10\%$ increase in growth An increase by $4C = 25\%$ increase in growth What is the % of increase in growth after a 6C increase in temperature?

- \circ 35%
- \circ $\leq 35\%$
- \circ >35%
- o It depends

Why does it depend?

Temperature

Performance curves are not linear

For additive driver, the effect depends on the shape of the curve and starting point

For additive driver, the effect depends on the shape of the curve and starting point

For additive driver, the effect depends on the shape of the curve and starting point

Ea+b > Ea + Eb Additive drivers Synergistic effects

Additive stressors add in a non-linear way (depends on the shape of the curve) so it does not translate into an arythmetic mathematical addition at the effect level

As a consequence:

1. What you see at the effect level does not say anything on the additivity of stressors

2. Multiple stressors experiments have limited potential to resolve how stressors work in combination

Take home messages

- ✓ Different combination of stressors at each location
- ✓ What defines a stressor is relative and depends also on each location
- \checkmark Combined effects are complex and cannot easily be understood from classic effect studies

To understand how two stressors work in combination you need the mode of action

Mode of action and interactions

Definitions

o *Additive*

Absence of interaction between drivers/stressors (dose-addition)

o *Synergism/Synergistic*

Interactions between drivers/stressors

o *Antagonistic*

Four options

o *Same or different mode of action* o *Interactions or no interactions*

Case study: warming and over-fishing

Global warming (A): kills 50% of fish

Fishing (B): kills 50% of fish

 $A+B?$

Stressor $1 =$ overfishing (50%)

Stressor $2 =$ Global warming (50%)

Stressor $1 +$ Stressor $2 = ?$??

Stressor $1 =$ overfishing (50%)

Stressor $2 =$ Global warming (50%)

Stressor $1 +$ Stressor $2 = ?$??

Stressor $1 =$ overfishing (50%)

Stressor $2 =$ Global warming (50%)

Stressor $1 +$ Stressor $2 = ?$??

 $R_{A+B} = R_A + R_B - R_A x R_B = 75\%$

Same mode of action and no interactions

OA + temperature

Low temperature Positive effect of OA

Mid temperature No effect of OA

High temperature Negative effect of OA

Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to $CO₂$ -driven acidification

Paola Gianguzza^a, Giulia Visconti^{a,*}, Fabrizio Gianguzza^b, Salvatrice Vizzini^a, Gianluca Sarà^a, Sam Dupont^o

^a Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi, 22, I-90123 Palermo, Italy ^b Department of Molecular and Biomolecular Technologies Sciences (STEMBIO), University of Palermo, 90128 Palermo, Italy .
partment of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Sciences, 45178 Fiskebäckskil, Sweden

Additive stressor, Depends on effects

Ocean acidification with toxicants

Need a deeper mechanistic understanding

Take home messages

- ✓ Different combination of stressors at each location
- \checkmark What defines a stressor is relative and depends also on each location
- \checkmark Combined effects are complex and cannot easily be understood from classic effect studies
- \checkmark Mechanistic studies are needed to understand multiple stressors

THE question

Multiple drivers/stressors (A, B, C, D, etc.)

What is the effect of A+B+C+D+etc.

How to answer this question

Multiple stressors experiments

Many stressors \checkmark Many scenarios

Complex to perform

Complex to interpret !

- *1. List your drivers/stressors (intensity, duration, thresholds, etc.)*
- *2. Understand the mode of action and interactions*
- *3. Understand your performance curves 4. Model*
- *5. Test your model*

Monitoring

Single stressor experiments

Modeling Multiple stressors experiments

Take home messages

- ✓ Different combination of stressors at each location
- \checkmark What defines a stressor is relative and depends also on each location
- \checkmark Combined effects are complex and cannot easily be understood from classic effect studies
- \checkmark Mechanistic studies are needed to understand multiple stressors

To build a local priority list of stressors, you need a **good understanding of the local conditions** (monitoring) as well as a **mechanistic understanding of each stressors** and their **combined effects** (mode of action)

+ Solutions – The science we need

Science priority based on development and implementation of solutions

- \checkmark General vs. Specific?
- ✓ Already available
- **Timeline**
- Science needs

Other resources: SCOR WG 149

https://meddle-scor149.org/

Other resources: Training

Basic Training Course on Multiple Stressors

May 2022 (2 weeks)

Monaco (IAEA), Villefranche-sur-Mer (LOV)

Ocean Acidification International **Coordination Centre**

OA-ICC

Check: https://news-oceanacidification-icc.org/

Thanks a lot for your attention !

