

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

TSUNAMI_RISK

German-Indonesian cooperation on warning for non-seismic tsunamis

Jörn Lauterjung, GFZ Potsdam

MOTIVATION: LANDSLIDE INDUCED TSUNAMI

MOTIVATION: VOLCANO INDUCED TSUNAMI

Two events struck Indonesia in 2018 (a) Palu earthquake (b) Krakatau collapse

Satellite radar observations by German satellite TerraSAR-X

Tsunami_Risk

Constructing a Catalogue

Multicriteria Decision Analysis:

- \rightarrow H/D-ratio of the volcano (height versus distance from the sea) (20%)
- \rightarrow Slope angle (20%)
- \rightarrow Eruption history (30%)
- → Tsunami & edifice instability history (20%)
- → Further hazardous features (Calderas, vegetation or hydrothermal alteration of the flanks, underwater edifice extent, etc.) (10%)

Score = Factor1 · Weight1 + Factor2 · Weight2 + Factor3 · Weight3 +... Point Value e.g. (0-100 or 1,2,3...) Point Weight All individual weights e.g. (10%) Should add to 100% GFZ

Zorn et al., (2022): https://doi.org/10.5194/egusphere-2022-130

Monitoring volcanoes with Remote Sensing

suna

• Preliminary work:

- Joint analysis of SAR, multispectral and thermal satellite data
- Analysis of the growth and collapse of a littoral lava dome
- Dome collapse caused a tsunami •

Journal of Volcanology and Geothermal Research

journal homepage: www.elsevier.com/locate/jvolgeores

Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery

Simon Plank^{a,*}, Thomas R. Walter^b, Sandro Martinis^a, Simone Cesca^b

German Aerospace Center (DLR), German Remote Sensing Data Center, D-82234 Oberpfaffenhofen, Germany ^b GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

Identification of Areas at Risk (Landslides)

Aim: Develop concepts for seismic early warning for volcanic collapse & landslide tsunami triggers

- Collapse easily seismically detected on broad frequency range
- The challenges:
 - distinguish collapse events from tectonic earthquakes
 - provide fast location and source estimate
 - is existing network dense enough?

GFZ

Helmholtz-Zentru

Open points and questions:

- Need of regional or even local monitoring,
- Real-time monitoring of (submarine) landslides and volcanoes difficult (compared to earthquakes),
- Robust and cost-effective instruments not yet available,
- Implementation of new technologies desirable,
- Need to involve several different scientific agencies

Elements of a solution

- Establishment of a multi-hazard cadastre (basis for a tailored monitoring strategy)
- Risk analysis based on multi-hazard cadastre ("risk-ranking")
- Cable based solutions (OBS, Pressure sensors, DAS technologies)
- Development of a flexible monitoring strategy: basic monitoring below a given threshold (e.g. by satellite monitoring), densified monitoring by temporary deployed instruments above threshold