

Satellite Activity for the UN Ocean Decade Safe Ocean Laboratory

Further Challenges for Warnings of Tsunamis

SESSION B: What do we know and need to know to warn for tsunamis generated by non-seismic and complex sources?

4. The seven types of volcanic tsunami sources

Raphaël Paris

Laboratoire Magmas & Volcans CNRS - Université Clermont Auvergne FRANCE

The activity and instability of volcanic edifices can produce tsunamis, so-called volcanic tsunamis or volcano-generated tsunamis.

Different types of source mechanisms were identified during past events.

Modified from Paris (2015)

< 1 km³ 10⁸ - 10⁹ m³/s Karymskoye 1996

Tonga 2022

Volcanic tsunami are often considered as « point » source generating local tsunami only.

However, the different types of source mechanisms vary in terms of frequency, volume, and flux.

-> different wave patterns from one case to another.

Learning from past examples of volcanic tsunamis

Type of eruption	Type <u>event</u>	Earth- quake	Underwater explosion	Caldera subsidence	Pyroclastic flow	<u>Flank</u> failure
Phreatomagmatic explosions in shallow waters	<u>Myojin-Sho</u> 1952 Karymsky Lake 1996					
Plinian eruption forming a submarine caldera	Krakatau 1883 <u>Santorini</u> LBA 3.6 ka					
Plinian eruption forming a subaerial caldera	Tambora 1815 Aniakchak 3.5 ka					
Explosive eruption with dome growth and collapse	Montserrat 2003 <u>Paluweh</u> 1928					
Explosive paroxysm of strombolian cone	Stromboli 2002 Tinakula 1971					
Massive flank failure	Ritter 1888 <u>Oshima-Oshima</u> 1741	?				

- The great majority of volcanic eruptions do not generate tsunami.
- A single eruption might generate different types of tsunamis.
- Source of tsunami observed during an eruption is often difficult to identify.
- It is extremely difficult to anticipate a volcanic tsunami.
- Hazard assesment is complex and requires a double volcano-tsunami expertise.
- Risk assement is thus challenging but not impossible if an adequate monitoring is combined with early warning system and population preparedness.

Main parameters:

- volume of the sliding mass
- its initial acceleration
- its maximum velocity

Three successive waves:

- a first crest ahead of the slide front (energy transfer from the slide)
- 2. a large trough propagating at the speed of the slide front
- 3. a final crest (often the highest) = main cause of inundation

Subaerial landslides characterized by complex interactions flow/air/water at the impact -> more challenging to simulate.

- Water above the flow pushed upward, and water in front pushed forward.
- Impulse (forced) wave first travels at the speed of the slide front, and then becomes a free wave
- Followed by trailing waves
- Near-field, this leading wave is usually the largest one (efficient energy transfer). Its height increases with increasing slide Froude number, relative thickness, mass flux and volume
- Far-field: propagation influenced by frequency dispersion

Numerical models are benchmarked using laboratory experiments

(c) Submarine (θ =45°, d=0.004 m, m=10 kg, h=0.60 m, h_i =0.40 m)

- Understanding the physics of wave generation and wave propagation
- Influence of each parameter
- Propose equations that predict the wave amplitude
- Provide guidance for the parameterization of the numerical models

Pyroclastic flows are highly-mobile hot mixtures of gas and particles generated by volcanic eruptions, particularly in case of a volcano dome collapse or a plume (column) collapse

-> add a degree of complexity compared to other landslides

Important parameters controlling the interactions between pyroclastic flows and water bodies:

- flow bulk density
- flow permeability (i.e., its grain size distribution)
- mass flux at the impact with water
- angle of incidence (slope) at the impact with water
- distance from the eruptive vent to the shoreline

Laboratory experiments on tsunami generated by pyroclastic flows

Non-fluidized

Fluidized

Highly mobile flow E.g. pyroclastic flow

-> higher flow velocity and mass flux
-> very efficient energy transfer from flow to water
-> steeper and higher wave

Large explosive eruptions may result in the collapse of the central part of the edifice -> large depression, so-called caldera, with diameter typically hundreds of metres to tens of kilometres.

Sources of uncertainty:

- Duration of a caldera collapse: poorly constrained (from minutes to hours)
- Geometry: from a single block to multi-stage subsidence of sub- blocks.

In theory, submarine caldera collapse generates:

- An initial subsidence of the water surface -> leading trough (negative wave), whose size depends on the collapse geometry and duration.
- Followed by a dome of water that collapse -> secondary crests (positive waves)

Kolumbo submarine volcano (Aegean Sea)

Ulvrova et al. 2016

Only fast caldera collapses (<5 minutes) are efficient in terms of tsunami generation. Unrealistic?

Real-case caldera collapses usually last from ~30 minutes (e.g., Pinatubo 1991, Philippines) to 12 days (e.g., Fernandina 1968, Galapagos).

Tonga 2022 caldera collapse?

Underwater explosion may generate tsunami under specific conditions of explosion depth, duration, and energy.

- Water is initially pushed upward
 -> water crater
- Water crater collapses
 -> dome of water
- Water dome then turns to a cylindrical bore that expands radially to form the leading wave

The leading wave (crest) is followed by a trough and a secondary crest. Short-period waves, frequency dispersion

Initial water surface uplift η_0 can be estimated as a function of explosion energy E.

Adapted from Le Méhauté & Wang 1971 & 1996

Numerical simulation of the 1996 tsunami in Karymskoye Lake (Kamchatka)

In theory, volcano-tectonic earthquakes (VT) with a magnitude $M_s > 6$ resulting from the accumulation of stress induced by magma ascent may involve ground deformation large enough to generate local tsunami.

However, it is often difficult to distinguishing between the tsunamigenic nature of the VT earthquake itself and its secondary effects such as landslides.

Another scenario :

 $M_s > 7$ on large thrust faults at the base of ocean shield volcanoes can generate local tsunami with significant wave amplitude

e.g. 1975 Kalapana M_s = 7.2 earthquake in Hawaii
-> large-scale slumping/faulting (still debated) of the SE submarine flank of Kilauea volcano
-> 1 m subsidence onshore and 1 m uplift offshore = 2.5 km³ of water displaced (*Ma et al. 1999*)
-> tsunami runup up to 14 m on SE Hawaii

Hawaii National Park Service

Large explosion -> volcano-meteorological tsunami

Lamb-type atmospheric pressure-forcing (moving source) generates basin-wide tsunamis that jumps over land and travels faster (~310 m/s) than usual earthquake-induced tsunamis.

World-wide tsunami following the 1883 August 27 explosion of Krakatau: a predecessor of the 2022 January 15 Tonga tsunami

Annex

Other examples of volcanic tsunamis

La catastrophe de 1792, Japon, Kyushu

Tsunami in Ariake Bay generated by the collapse of the Mayuyama peripheral dome during the eruption of Unzen volcano

Precursors: strong sismicity Aggravating factor: hydrothermal alteration

Volume of collapse: $340 \times 10^6 \text{ m}^3$ (Michiue et al., 1999)

~3 times Krakatau 2018

Tsunami > 10000 fatalities

2nd deadliest natural disaster in Japan with the 2011 Tohoku-oki earthquake and tsunami

Tsunami inundation map (the first one?) made by Japanese engineers after the disaster

Tokiwa Museum of Historical Materials, Honkoji Temple, Kyushu

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

lliwerung 1979 (Flores)

July 1979: 50 x 10⁶ m³ landslide (30% volume offshore) on the NE flank of Iliwerung volcano no on-going eruption, no earthquake recorded or felt

-> 4 villages buried (364 killed)

-> tsunami waves 8 m (539 killed). Stromboli volcano (Aeolian Islands, Italy), December 2002

Unusual explosive activity

 17×10^6 m³ landslide on the northern flank (*Tinti et al. 2006*).

-> tsunami runup 8 m on the coasts of Stromboli, but no fatalities (winter time).

NB- short-period tsunami had a limited impact in the nearfield (> 200 km) (Maramai et al. 2005). Mount Pelée, Martinique, May 1902

Debris flow on May 5, 1902 in the Rivière Blanche, 3 days before the destruction of St Pierre city by a large pyroclastic flow

-> Tsunami waves observed during 15 minutes

- sea retreat 10-30 m
- 15 successive oscillations
- wave amplitude 2-3 m

A unique example of tsunami generated by debris flow.

Montserrat, 1997

On the night of the Boxing Day eruption (December 26, 1997) waves inundated the Old Road Bay area.

- Initial sea retreat observed
- Tsunami runup 3 m
- Inundation distance 80 m
- No strong evidence for wave inundation elsewhere

Montserrat, 2003

Major collapse of lava dome on July 12, 2003

-> tsunami 4 m on Montserrat Island at up to 4 km from the source area (Farm Bay)

-> tsunami <1 m on NW coast of Guadeloupe Island (50 km away from the volcano)

Pelinovsky et al. (2004)

Fig. 7 19 September 1994 pyroclastic flow entering seawater on the northern flank of Vulcan (photograph taken from the Rabaul Volcano Observatory). Note that no water disturbance is apparent yet

Fig. 2. Tide gauge record at Rabaul, registering two tsunamis. The tsunami that occurred on the morning of September 18th, 1994, was caused by earthquake, and that of September 19th was associated with the eruptive activity of Vulcan volcano. The tide gauge is operated by the Rabaul Volcanological Observatory.

Fig. 6 September 2006 satellite imagery showing the maximum tsunami run-up heights (m a.s.l.) generated by the 1994 Rabaul eruption, Papua New Guinea (modified after Nishimura et al. 2005)