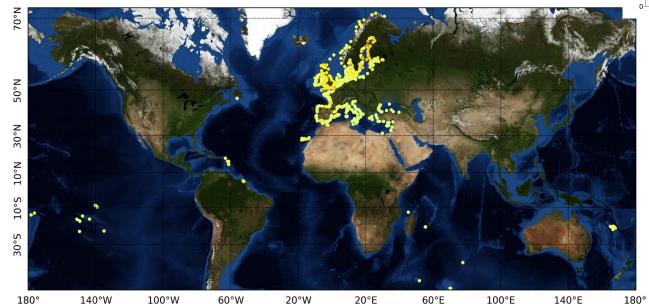
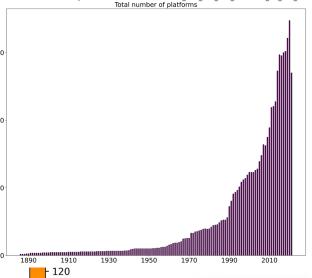


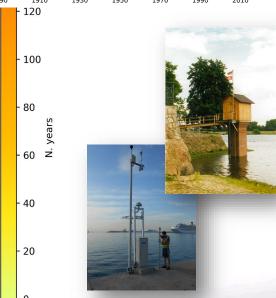
In Situ Thematic Assembly Centre for Copernicus Marine Service 2 - PHASE I (2022-2024)

Development of a new global In Situ Sea Level REProcessed product

Begoña Pérez Gómez on behalf of the Sea Level REP Team



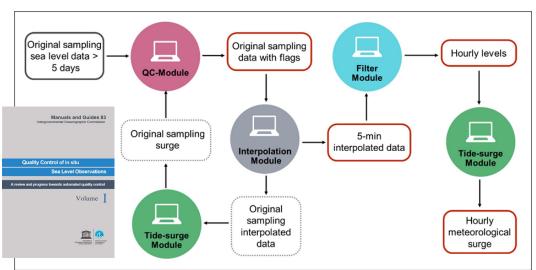

IN-SITU SEA LEVEL STATUS IN COPERNICUS MARINE CATALOGUE

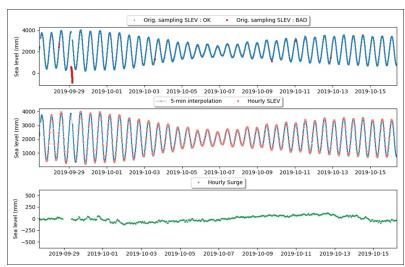

Starting point (2022): INS TAC NRT data

- 639 tide gauges of different technologies (radar, acoustic, floats, pressure sensors), most in European region
- Longest time series in INS TAC in the Baltic (since 1886)
- Global coverage: <u>need to work with GLOSS to include the global network</u>)

Number of years of SLEV data in CMEMS In Situ TAC NRT products (2021)

NEW SEA LEVEL REP PRODUCT

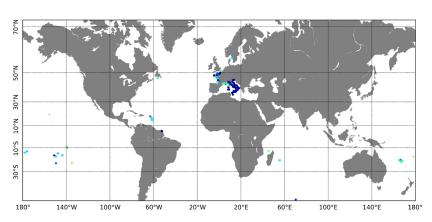

- Coastal in-situ sea level data distributed in delayed mode after homogeneous validation and assessment of historical time series, relevant to models reanalysis validation and climatic studies
- Visual inspection and automatic QC and data processing tools, following best practices at global and European level (GLOSS, EuroGOOS Datameq WG and Tide Gauge Task Team)
- Work with the sea level community for agreement on final product definition and **adoption of FAIR principles** (metadata, unique identifiers, interoperability..)

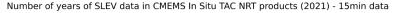


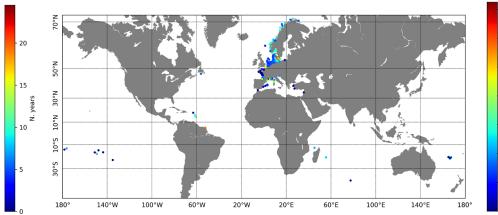
IN-SITU SEA LEVEL STATUS IN COPERNICUS MARINE CATALOGUE. QC/QA

NRT SLEV automatic QC in INSTAC (= NRT or L1 QC according to IOC-UNESCO, 2020):

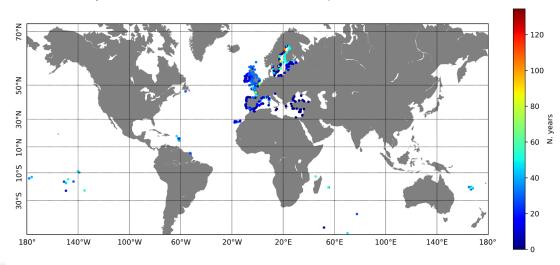

SELENE software. From IOC-UNESCO, 2020.


- QC-Module: Invalid characters, wrong date/time assignment, out of range values, spikes (spline-fit algorithm), constant values. Applied to total sea level and surge, if tidal constants available. Output: original time sampling with flags
- <u>By-products</u> (through Interpolation Module and Filter Module) (optional in NRT, not implemented):
 - Timeseries with homogeneous time sampling (resampling and interpolation of flagged data and short gaps)
 - Hourly data (by means of an adequate/standard filter)
 - Non-tidal residuals computation



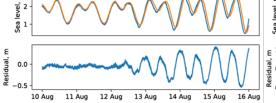


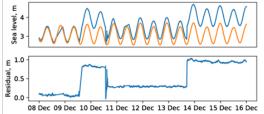
IN-SITU SEA LEVEL STATUS IN COPERNICUS MARINE CATALOGUE. QC/QA



- Different time samplings available in NRT/history data, <u>mostly hourly values</u>
- NRT QC routines and data quality dependent on the regions and data providers
- Survey on QC/QA status in the INSTAC regions launched on January 28

Number of years of SLEV data in CMEMS In Situ TAC NRT products (2021) - 60min data


SEA LEVEL REP: NEW QC/QA OF HISTORICAL DATA

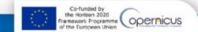

Delayed mode QC and data processing (L2, according to IOC-UNESCO, 2020):

Assessment/validation of historical time series including computation of hourly values (if needed), tide and non-tidal residual

• Detection/correction of additional types of errors in tide gauge data: datum changes, clock malfunction, long-term

drifts, etc

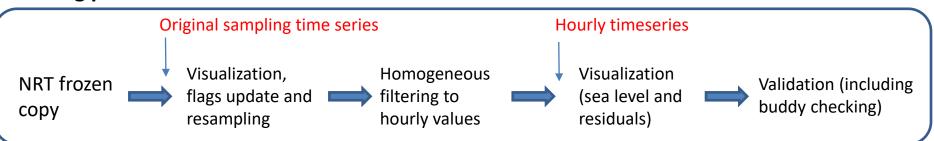
New procedures:

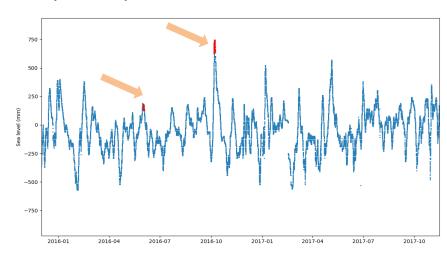

- 1. Visual inspection of historical records (total sea levels and residuals)
- 2. Neighbour-test or "buddy checking" applied to non-tidal residuals and monthly means
- 3. Comparison with altimetry/model data will also be explored

Different statistical techniques will be applied at points 2. and 3. above (e.g.: differences, correlation, Van de Casteele plots, etc).

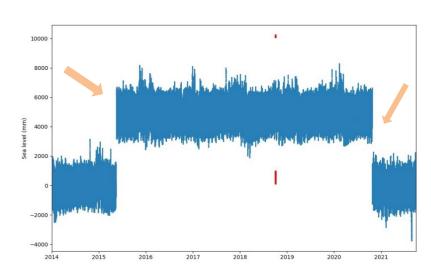
FAIR principles

Improved sea level metadata from tide gauges following GLOSS and EuroGOOS Tide Gauge Task Team recommendations


	EureSea
Project Information	
Project full title	EuroSea: Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable use of the Oceans
Project acronym	EuroSea
Grant agreement number	862626
Project start date and duration	1 November 2019, 50 months
r roject start date and daration	21101011001 2023, 30 11011013



SEA LEVEL REP: NEW QC/QA OF HISTORICAL DATA


Starting process:

Examples of problems detected:

- Updated flags will be reported to regions
- New hourly timeseries available for some stations in INSTAC

 Input data needed from data providers (through the regions): availability of reprocessed history files and metadata

SEA LEVEL REP: PRODUCT EVOLUTIONS 2022-2024

- Product definition, including required metadata and final procedures to be implemented
- Review of history files in INSTAC NRT quality status with the regions and data providers
- Upgrade of automatic qc/validation: neighbour test or "buddy" checking in SELENE QC software

2022:

- New Sea Level REP product based on INSTAC NRT time series (Nov. Release): 2 datasets, one for hourly values and one
 for data in their original sampling
- Roadmap for inclusion of stations from the global network, through interaction with external providers (GLOSS/EMODnet/SeaDataNet)
- Feasibility study of a dedicated coastal sea level REP product of tide gauge data (including Global Navigation Satellite System (GNSS) vertical land motion corrections)

2023:

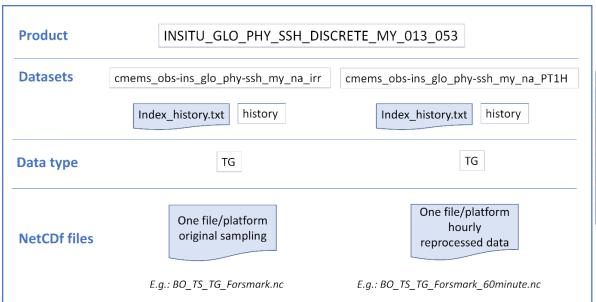
- <u>Temporal extension</u>
- Selection of detiding procedure (in agreement with on-going initiatives in GLOSS/IAPSO and the MFC's)
- New detiding tools in SELENE software
- Dataset for hourly sea levels including astronomical tide and non-tidal residuals in the IBI region

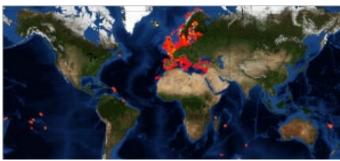
2024:

- Temporal extension
- Increased spatial coverage of the product with hourly dataset including stations from the global network

SEA LEVEL REP: Enhancements and Post-2024 plans

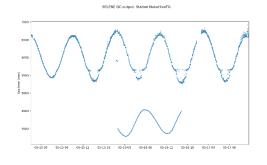
Product enhancements 2022-2024:

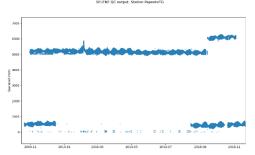

- First sea level reprocessed product in INSTAC
- Adoption of recommendations from the EuroGOOS TGTT and GLOSS on tide gauge metadata and identifiers
- Work with the global sea level community to include stations from the global network (GLOSS)
- · Improving interoperability with existing data portals with tide gauge data
- Integration of historical tide gauge data with the support of the regions
- Homogeneous and centralized data production and dissemination
- Improvements on existing QC tools and data processing including computation of non-tidal residuals

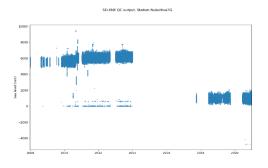

Post-2024 plans, potential additional funding available (Service evolution activities)

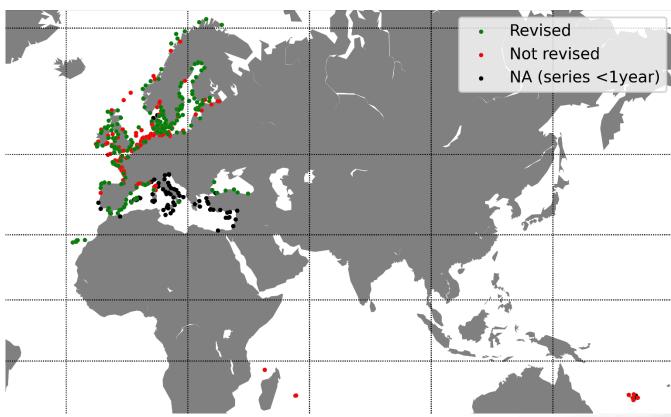
- Possible generation of new higher-frequency sea level datasets (e.g. 1-min) to deal with smaller scale processes
- Extend generation of the tide and surge parameters to all regions for better understanding of coastal processes.
- Generation of a sea level REP product with Vertical Land Movement correction
- Analyze the possibility of in-situ sea level measurements from other type of coastal and offshore platforms (e.g. GNSS-IR, ocean bottom pressure sensors, etc)

- New QC/data processing modules implemented in SELENE software for delayed mode application
- On-going discussion with In Situ TAC Technical Working Group about NetCDF attributes
- Preparation of the first release of the product in November 2022:
 - Product definition (two datasets) and structure defined
 - Creation of infrastructure (data base) and generation of first NetCDF files
 - Documentation preparation: Product User Manual (PUM) and draft versions of the Test
 Report, the Quality Information Document (QUID) and Synthesis Quality Overview (SQO)

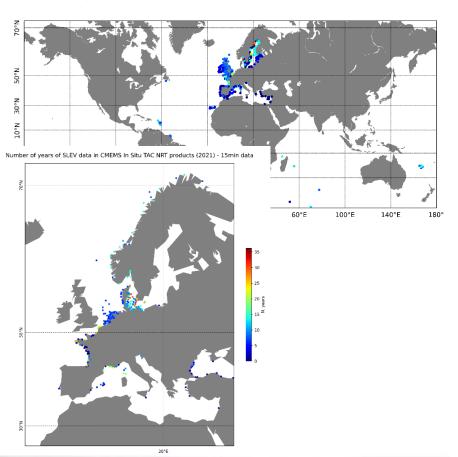







SEA LEVEL REP: Status July 2022

- 48% of stations in the IN SITU TAC NRT dataset already reprocessed
- Detection of first problems and communication to the regions and data providers
- Blacklisting of stations on-going: duplicates for same time sampling, datum changes, etc



SEA LEVEL REP: Status July 2022

Example of QUID draft content, on-going action:

Spatial and temporal coverage:

Number of years of SLEV data in CMEMS In Situ TAC NRT products (2021) - 60min data

Metrics:

Short description	Applicability of metrics								
	Raw data		By-products com	computation:					
	Original time sampling	Interpolation module (Resampled TS)	Tide-Surge Module (Non- tidal residuals)	Filter Module:Hourly data	Monthly means				
Strange characters detection	х								
Date and Time	х								
Out of range values	х		х						
Stability/flatline test	х		х	х					
Attenuated signal				x					
Spike detection	х		х						
Buddy-checking	х		х		х				
Clock malfunction			х						
Datum change			х		х				
Drift					Х				

Table 3: Metrics used for delayed mode quality control of the Sea Level REP product, according to GLOSS best practices (IOC, 2020).

Overview of data quality:

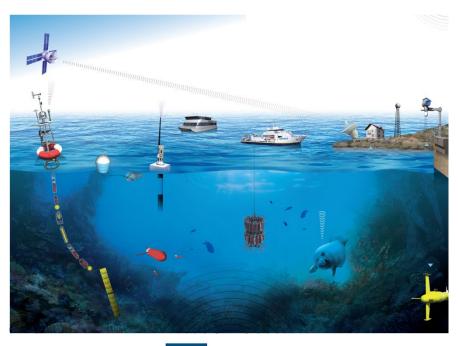

Sea level	Coverage (Number of platforms and Completeness Index)											
	1850-1969				1970-1992			1993-2021				
	N	Std	<u>C.I.</u>	Ny>70	N	Std	<u>C.I.</u>	Ny>70	N	Std	<u>C. I.</u>	Ny>70
GL												
AR												
ВО												
BS												
NWS												
MED												
IBI												

Table 5. Mean number of platforms \overline{N} and Std, mean Completeness Index $(\overline{C.I.})$, and number of years with C.I.>70% for different regions and three periods: 1850-1969, 1970-1992 and 1993-2021.

100

60 z

