

R.E. Jensen¹, V. Swail², R.H. Bouchard³, C. Hall¹ and S. DiNapoli⁴

¹USACE ERDC-CHL ²ECCC ³Retired, NOAA-NDBC ⁴NOAA-NDBC

Environment and Climate Change Canada Environnement et Changement climatique Canada

Robert.E.Jensen@usace.army.mil

US ARMY ENGINEER RESEARCH AND DEVELOPMENT CENTER COASTAL & HYDRAULICS LABORATORY

- Introduction
 - Background
 - Study Area
 - Buoy Characteristics
- Analysis-Results
 - Bulk Parameters / Statistics
 - Frequency Spectra
- Observations
- Conclusions
- Vision Forward

Jensen, R.E., Swail, V. and R.H. Bouchard, (2021). Quantifying wave measurement differences in historical and present wave buoy systems, *Ocean Dynamics*, **71**, 731-755, https://doi.org/10.1007/s10236-021-01461-0. 2

- Test and Evaluation of Wave Measurement Systems:
 - Critical to NWP's to evaluate wave forecasts
 - Assimilation into NWP forecasts
 - Used to improve wind-wave modeling technologies
 - Drive nearshore wave models
 - Track spatial / temporal variations in wave climate
 - Altimeter algorithms
 - Tracking wave climate trends
- Differences exist between wave measurement systems
 - Will differences affect the outcome of their usage?
 - Scale of the differences vs. application

DBCP: Task Team on Wave Measurements

- Focus: 6N NOMAD Buoy and their data
- Used by NOAA-NDBC and ECCC over 4 decades
- Limited evaluations
 - Steele et al. (1978) / Murphy (1979): GoM (198 samples)
 - Skey et al. (1998) SWS-1: Pacific (Winter 94 95)
 - Taylor et al. (2005) SWS-2: Atlantic (Oct 1997 Mar 1998)
 - Jensen et al. (2011) 44255: Atlantic (Jul 2010- Feb 2011)
 - Collins et al. (2014) ITOP: Pacific (4 months)
- NOAA-NDBC: 0 (all decommissioned 2019)
- ECCC: 0 (all decommissioned ~2020)
- Time is running out to evaluate 6N buoys

Historical account of NDBC 6N buoys Total number of 'buoy years' = 707

- USACE: Coordination (\$)
- NDBC:
 - Hull
 - Sensor/Payloads
 - Inclinometer ٠
 - **HIPPY-Magnetometer** ٠
 - 3DMG ٠
- **USCG:** Deployment
- AXYS •
 - TRIAXYS Next Wave II DWS/WM
- ECCC ۲
 - Strapped Down Accelerometer
 - AXYS-Watchman
- MEDS
 - MEDS-Data Archive

US Army Corps of Engineers_®

Environment and Climate Change Canada

Canada

Fisheries and Oceans Pêches et Océans Canada

- FLOSSIE: 6N (NOMAD BUOY)
 - Aug 2015 Oct 2019
 - 5 Sensors
 - NDBC: Inclinometer (Ndir)
 - NDBC: 3DMG (Dir)
 - NDBC: HIPPY (Dir)
 - ECCC: Watchman (Ndir)
 - AXYS: TRIAXYS Next Wave II DWS-WM (Dir)
- NDBC 3D (Aluminum)
 - NDBC: 3DMG (Dir)
 - NDBC: HIPPY (Dir)
- Datawell Directional WaveRider
 - RELATIVE REFERENCE

GPS Positioning Hourly Buoy movement

- Bulk Wave Properties
 - $H_{mo}, T_{pp}, T_m, \theta_{mean}(f_m), \theta_{mean}, \sigma.$
 - Quantile evaluations
 - Frequency spectral moments:
 - Spread, Peakedness, Steepness, Mean Square Slope
- Frequency Spectra
 - E(f), Steepness(f), Slope(f)
- D(f): Four Fourier Directional Parameters
 - Intent of FLOSSIE was <u>not</u> to determine if it could estimate wave directions
 - DDWM-3DMG / DWPM-HIPPY / AXYS-Triaxys WSII
 - On-board capability
 - Limit to: $\theta_{mean}(f_m)$, θ_{mean} , σ

FLOSSIE/ANALYSIS: BULK WAVE PARAMETERS

DWR: Base Data Set Time paired to each Set

Differences around the Spectral Peak Existence of Multiple Wave Systems

FLOSSIE/ANALYSIS: BULK WAVE PARAMETERS

Vector Mean Wave Direction at spectral peak <u>Pure</u> Measurement

Overall Vector Mean Wave Direction <u>Estimate</u> using a₁,a₂,b₁,b₂ and MEM

What is the variation in statistics over set quantiles?

DWR vs Inclinometer

DWR vs Watchman

Is one statistical value sufficient as a metric marker? Solid line: Mean / Dashed line: Quantiles

Is one statistical value sufficient as a metric marker? Solid line: All data / Dashed line: Quantiles

Over the mean shapes similar for All vs 90th Percentile

Watchman results affected by smaller population size

Frequency Hz

- Wave measurement systems have their own specific attributes that can impact the data
- Intra-measurement evaluations must go beyond bulk wave parameters and defined by a single statistical value
- Despite the QA-QC measures, wave data delivered contains embedded errors that must be corrected especially in the frequency spectra
- Co-location intra-measurement investigations are subject to spatial and temporal variations in the wave climate measured that may go beyond geophysical variability
- Despite original thoughts regarding directional wave measurements from non-symmetric buoys they appear to be accurate
- If raw spectra (no filtering / modifications by a RAO) are available, errors can be corrected
- Despite a successful 4-yr campaign, results from FLOSSIE may only be applicable to the wave climate measured in the eastern Pacific

- NDBC-Inclinometer
 - Compares better to DWR than all sensors in $H_{\rm m0}$ for full range of wave conditions
 - Has elevated T_{pp} estimates
 - Energy tails off rapidly > 0.4Hz
 - Slope spectral estimates run high in mid-range / does not approach constant (as in DWR).
- NDBC-3DMG and HIPPY
 - Performed well up to ~6m then showed an increasing under-estimate compared to DWR $\rm H_{\rm m0}$
 - Follows T_{pp} estimates well through range
 - Slope spectra fall off at > 0.35Hz (worse than Inclinometer)

- AXYS-Triaxys WSII
 - Over estimates in H_{m0} range from 6-7m, then under estimates by 1m
 - Has consistent T_{pp} estimates
 - Energy tails off rapidly > 0.4Hz (most severe of all)
 - Slope spectral estimates run high and continues in mid-range / does not approach constant (as in DWR).
- ECCC-Watchman
 - Performed well up to ~7m then showed an increasing under-estimate (most severe of all) compared to DWR $\rm H_{m0}$
 - Follows T_{pp} estimates well but elevated in the +20s.
 - Slope spectra fall off at > 0.4Hz and similar to all other sensors
 - Note that analysis was constrained by the limited population size

- Co-located intra-measurements are extremely useful but there are caveats that need to be considered
 - Spatial (separation distances)
 - Temporal (sampling interval) variabilities
- One statistical value for a specific parameter does not define the deviations found in the data
- Frequency spectra needs to be included in evaluations
- Steepness (not shown here) and Slope spectra should comply with theory
- If we consider a 10% error in the H_{mo} measurements are we willing to accept a $\pm 1m$ difference in 10m?

OR IN OTHER WORDS, HOW CLOSE IS CLOSE ENOUGH TO DEFINE ACCURACY IN WAVE MEASUREMENT?

- Continued Test and Evaluation
- New buoy configurations
- New sensor packages to be evaluated
 - NDBC: OWL-Ocean Wave Linux (Replaces 3DMG)
 - Meteorological
 - Rm-Young and secondary: Sonic anemometer
 - Elevation change from standard 5m

Robert.E.Jensen@usace.army.mil