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DATA BUOY CO-OPERATION PANEL (DBCP)

Format for National Reports on Current and Planned Programmes


Country:	United States of America

Year:		2022


CURRENT PROGRAMMES:


	Agency or programme

	Global Drifter Program (GDP)


	Number and type of buoys
	(a) deployed during the year
	862

	
	(b) operational as of 31 July
	1249

	
	(c) reporting on GTS as of 31 July

	all

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Global

	Vandalism incidents
	(a) Number of incidents: NONE
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



[bookmark: _GoBack]The Global Drifter Program (GDP) is the principle component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System (GOOS) and a scientific project of the DBCP. Its objectives are to (1) Maintain a global 5x5 degree array of ~1300 satellite-tracked surface drifting buoys to meet the need for an accurate and globally dense set of in-situ observations of mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity, and (2) provide a data processing system for scientific use of these data.  These data support short-term (seasonal to interannual) climate predictions as well as climate research and monitoring.  For more information, see http://www.aoml.noaa.gov/phod/dac/gdp_objectives.php and http://gdp.ucsd.edu/ldl_drifter/index.html.

Pandemic-related deployment constraints were relaxed through the year.


	Agency or programme

	US Interagency Arctic Buoy Program (USIABP)


	Number and type of buoys
	(a) deployed during the year
	122


	
	(b) operational as of 31 July
	200

	
	(c) reporting on GTS as of 31 July

	57

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Arctic Ocean, Bering and peripheral seas.

	Vandalism incidents
	(a) Number of incidents NONE
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



The USIABP coordinates US contributions to the International Arctic Buoy Programme (IABP). Its objectives are to provide meteorological and oceanographic observations for real-time operational requirements and research purposes.  For more information, see http://iabp.apl.uw.edu.

COVID-19 cancelled some of our own field work in 2021-2022, but we were still able to deploy most of our buoys using local collaborators, and by leveraging many of our other logistics-of-opportunity.

We also deployed 65 GPS trackers on ice bergs north of Alaska, and around Greenland. These comprise most of the buoys that were not posted on the GTS.

As of June 2022, there were 200 buoys reporting in the IABP array (Figs. 3 and 4). The USIABP either purchased, deployed, or covers satellite telemetry for 155. The next largest contributor the IABP buoy network is the NOAA Global Drifter Program which owns and coordinated the deployment of 71 buoys reporting on the GTS in the North Atlantic sector of the Arctic Ocean, and Baffin Bay. 


	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC)  Coastal Weather Buoys (CWxB)

	Number and type of buoys
	(a) deployed during the year
	20

	
	(b) operational as of 31 July
	94

	
	(c) reporting on GTS as of 31 July

	94

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Atlantic and Pacific Oceans and Coastal Zone of the US, including the Bering Sea, Gulf of Mexico, and Great Lakes

	Vandalism incidents
	(a) Number of incidents 56
(refer to vandalism report for details).



The National Data Buoy Center (NDBC) Coastal Weather Buoy network (CWxB) is a principle component of NOAA’s ocean observing system and a part of the Global Ocean Observing System (GOOS).The mission of NDBC’s Coastal Weather Buoy network is to provide quality observation to further the understanding and predictions to changes in weather, climate, and oceans. To support this mission NDBC's moored buoys measure and transmit barometric pressure, wind speed and direction, wind gust, air temperature, relative humidity, and sea surface temperature. In addition, all CWxB measure wave energy spectra from which significant wave height, dominant wave period, and average wave period are derived. Even the direction of wave propagation is measured on many moored buoys.  For more information, see http://www.ndbc.noaa.gov/mooredbuoy.shtml.

The NDBC CWxB network has experienced no significant impact as a result of the COVID-19 pandemic. 


	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC)  Tsunameter Buoys

	Number and type of buoys
	(a) deployed during the year
	27

	
	(b) operational as of 31 July
	32

	
	(c) reporting on GTS as of 31 July

	32

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Atlantic and Pacific Oceans and Gulf of Mexico

	Vandalism incidents
	(a) Number of incidents 1
(refer to vandalism report for details).



To ensure early detection of tsunamis and to acquire data critical to real-time forecasts, NOAA has placed Deep-ocean Assessment and Reporting of Tsunami (DART) buoys at sites in regions with a history of generating destructive tsunamis. Originally developed by NOAA, as part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the DART Project was an effort to maintain and improve the capability for the early detection and real-time reporting of tsunamis in the open ocean.   DART presently constitutes a critical element of the NOAA’s Tsunami Program. NOAA’s National Weather Service (NWS) is responsible for the overall execution of the Tsunami Program and NDBC is responsible for operating and maintaining the network of 39 tsunameter buoys. For more information on the NDBC tsunameter buoys see http://www.ndbc.noaa.gov/dart/dart.shtml. 


The NDBC Tsunameter Buoy network has experienced no significant impact as a result of the COVID-19 pandemic. 


	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC)  Tropical Atmosphere Ocean (TAO) Arrray

	Number and type of buoys
	(a) deployed during the year
	24

	
	(b) operational as of 31 July
	40

	
	(c) reporting on GTS as of 31 July

	40

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[ ]

	Main deployment areas
	Equatorial Pacific Ocean

	Vandalism incidents
	(a) Number of incidents 52
(refer to vandalism report for details).



The Tropical Atmosphere Ocean (TAO) array consists of approximately 55 moorings in the Tropical Pacific Ocean with real-time telemetry of oceanographic and meteorological observations.  The array is a major component of the El Niño/Southern Oscillation (ENSO) Observing System, the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS).  Support for the array is provided by the United States (National Oceanic and Atmospheric Administration). For more information see http://tao.ndbc.noaa.gov/proj_overview/proj_overview_ndbc.shtml


The TAO array has experienced minor impacts as a result of the COVID-19 pandemic. These small impacts are related to business closures and longer than normal lead times for sensor refurbishments.



	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ Pacific Marine Environmental Laboratory (PMEL) and Atlantic Oceanographic and Meteorological Agency (AOML)
Prediction and Research moored Array in the Tropical Atlantic (PIRATA)


	Number and type of buoys
	(a) deployed during the year
	17 surface toroids

	
	(b) operational as of 31 July
	17 surface toroids

	
	(c) reporting on GTS as of 31 July
	17 surface toroids

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[ ]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Tropical Atlantic Ocean

	Vandalism incidents
	(a) Number of incidents: unknown
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



PIRATA is a multinational observation network, established to improve our knowledge and understanding of ocean-atmosphere variability in the tropical Atlantic. It is a joint project of Brazil, France and the United States of America.  PIRATA is motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the countries surrounding the tropical Atlantic basin. The overarching goals of the project are to (1)     improve the description of the intra-seasonal to interannual variability in the atmospheric and oceanic boundary layers of the tropical Atlantic Ocean; (2) improve our understanding of the relative contributions of air-sea fluxes and ocean dynamics to variability in sea surface temperature and sub-surface heat content; (3) provide a set of data useful for developing and improving the predictive models of the ocean-atmosphere coupled system; (4) document interactions between tropical Atlantic climate and variability outside the region, such as ENSO and the North Atlantic Oscillation; and (5) design, deploy, and maintain an array of moored oceanic buoys and collect and transmit a set of oceanographic and atmospheric data, via satellite in near-real time, to monitor and study the upper ocean and lower atmosphere of the tropical Atlantic Ocean.  For more information, see http://www.pmel.noaa.gov/pirata/. 

The current array design for PIRATA calls for 18 surface buoys; this network is 100% completed.  Future extensions and additions may be added, as demanded by research and operational needs.

Impacts from the COVID-19 Pandemic:  Cruise delays, response and expected loss of data:
· Nov–Dec 2021 (completed): Ronald H. Brown (21°N 23°W, 12°N 23°W, 4°N 23°W, 20°N 38°W). The mooring at 12°N 38°W was recovered on this cruise to avoid complete loss as it was deployed in Oct 2018 and stopped transmitting data in Nov 2020. A cruise is scheduled for Nov–Dec 2022 and will service (21°N 23°W, 12°N 23°W, 4°N 23°W, 20°N 38°W and 4°N 38°W). We anticipate no gap in data. We expect no data loss.
· Feb–April 2022 (completed): Thalassa (0° 3°W, 0° 10°W, 6°S 10°W, 10°S 10°W, 20°S 10°W, 0° 23°W).  These six moorings were deployed in Feb–April 2022. We anticipate no gap in data. We expect no data loss
· May–June 2022 (completed): Antares (19°S 34°W, 14°S 32°W, 8°S 30°W, 0° 35°W, 4°N 38°W, 8°N 38°W, 12°N 38°W, 15°N 38°W). Seven out of the eight moorings were deployed in May–June 2022. The 4°N 38°W was not serviced due to loss of equipment. This mooring will be serviced by the Ronald H. Brown in Nov–Dec 2022.  There will be a 6 month delay in data from this site. 
Loss of hardware:	
There was complete mooring losses at 0° 35°W, 4°N 38°W, 8°N 38°W due to the long 3.5 year period between servicing and a partial mooring loss at 15°N_38°W due to nylon break caused by high tensions during recovery and 19°S 34°W due to wire breakage.
Project Deliverables and Education impacts:
PIRATA moorings have a 1-year (annual) service and maintenance design life. The delays in servicing these moorings will result in data losses due to battery failures and will increase the risk of equipment losses and high-resolution data losses due to extended deployment periods well in excess of the design life and impose additional risk by fishing activities and vandalism.  These delays will therefore limit NOAA's capability to meet NOAA's mission. 


	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ Pacific Marine Environmental Laboratory (PMEL)
Research Moored Array for African-Asian-Australian Monsoon Analysis and prediction (RAMA)


	Number and type of buoys
	(a) deployed during the year
	3 surface toroids, 1 subsfc moorings 

	
	(b) operational as of 31 July
	5 surface toroids, 5 subsfc mooring

	
	(c) reporting on GTS as of
31 July
	2 (2 moorings went adrift)

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[ ]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Tropical Indian Ocean

	Vandalism incidents
	(a) Number of incidents: unknown due to mooring loss and deployment times that have exceeded lifetime design.
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



RAMA addresses the needs for comprehensive, long term, high quality real-time measurements in the Indian Ocean suitable for climate research and forecasting.  RAMA is targeted at understanding and prediction of the east African, Asian and Australian monsoons, and benefits nations outside the Indian Ocean region due to atmospheric teleconnections  which influence the far field.  For more information, see http://www.pmel.noaa.gov/tao/rama/. 

The current array design for RAMA calls for 25 moored buoy sites maintained by the US (NOAA/PMEL), of which 23 (92%) have been implemented and occupied for at least one year. Future additions may be added, as demanded by research and operational needs. Only five of these US RAMA mooring sites are actively transmitting from the moored position due to inability to maintain RAMA moorings during the COVID-10 pandemic.

Impacts from the COVID-19 pandemic: Cruise delays, response and expected loss of data:
· December 2021 (completed): Isabu (4°S_67°E, 8°S_67°E, 12°S_67°E). Three moorings were deployed. Two of these moorings went adrift. 4°S 67°E went adrift Dec 2021 about 30 hours after deployment during IO4-21-IS. Isabu would not turn back. Drifted near Diego Garcia, but intercepted and recovered by M/V Grampian Frontier on 19 Jan 2022. All subsurface recovered (except for release). 8°S 67°E went adrift on September 18, 2022.
· No cruises onboard the Sagar Nidhi were scheduled to service the following sites: (15°N 65°E, 8°N 67°E, 4°N 67°E, 2°N 67°E, 0° 67°E, 2°S 67°E, 0° 81°E, 2°S 81°E, 4°S 81°E, 8°S 81°E, 12°S 81°E). These moorings have been deployed between 1050–1150 days (2.9–3.15 yrs.). We expect full mooring loss at 15°N_65°E, 2N_67°E, 0°_67°E, 2°S_67°E, 0°_81°E, 2°S_81°E, 4°S 81°E, 8°S 81°E.  We expect an additional > 6 months delay before these sites will be serviced. We expect a > 12-month loss in T, S and surface met data and > 12-month loss in near surface current data (U/V).
· September 2022 (postponed): Baruna Jaya (15°N 90°E, 12°N 90°E, 8°N 90°E, 0° 90°E). Cruise rescheduling is TBD. None of these moorings are transmitting. These moorings have been deployed for >1030 days (2.84 years). We expect an additional >6 months delay before these sites will be serviced. We expect a >12-month loss in T, S and surface met data and >12-month loss in near surface current data (U/V). 
· Tethys Supporter (4°S 57°E, 8°S 55°E). A cruise will NOT be scheduled.  
Loss of hardware:
We anticipate complete mooring losses at 15°N 90°E; 0° 81°E, 2°S 81°E, 4°S 81°E 8°S 81°E, 15°N 65°E; 2°N 67°E; 0° 67°E; 2°S 67°E; 4°S 57°E; 8°S 55°E.  We anticipate other potential losses at sites that have been deployed >1 year. However, we will not be able to confirm these as losses until we are able to access the sites during cruises.
Project Deliverables and Education impacts:
RAMA moorings have a 1-year (annual) service and maintenance design life. The delays in servicing these moorings will result in data losses due to battery failures and will increase the risk of equipment losses and high-resolution data losses due to extended deployment periods well in excess of the design life and impose additional risk by fishing activities and vandalism.  These delays will therefore limit NOAA's capability to meet NOAA's mission.  We expect many educational aspects impacted since there are many students using these freely available RAMA mooring data for research.


	Agency or programme

	Coastal Data Information Program (CDIP)


	Number and type of buoys
	(a) deployed during the year
	~40

	
	(b) operational as of 31 July
	~80

	
	(c) reporting on GTS as of 31 July

	All operational

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	US waters worldwide: Atlantic, Caribbean, Gulf of Mexico, Pacific, Alaska, Hawaii, Pacific Islands

	Vandalism incidents
	(a) Number of incidents NONE
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



The Coastal Data Information Program (CDIP) is an extensive network for monitoring waves and beaches along the coastlines of the United States. Since its inception in 1975, the program has produced a vast database of publicly accessible environmental data for use by coastal engineers and planners, scientists, mariners, and marine enthusiasts. The program has also remained at the forefront of coastal monitoring, developing numerous innovations in instrumentation, system control and management, computer hardware and software, field equipment, and installation techniques. CDIP operates out of Scripps Institution of Oceanography, La Jolla, CA. For more information, see http://cdip.ucsd.edu/.


	Agency or programme

	Naval Oceanographic Office (NAVOCEANO)


	Number and type of buoys
	(a) deployed during the year
	2 Iridium ALAMO floats, 6 MetOcean iSLDMB drifters

	
	(b) operational as of 31 July
	0 Iridium ALAMO floats, 0 MetOcean iSLDMB drifters

	
	(c) reporting on GTS as of
31 July
	0 Iridium ALAMO floats, 0 MetOcean iSLDMB drifters

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Global

	Vandalism incidents
	(a) Number of incidents NONE
If vandalism incidents have occurred during the year, please provide the details using the form in the annex.



The purpose of NAVOCEANO deployments is to support US Navy operations globally.  Deployment plans are dictated by operational needs.

Note:  COVID-19 associated reduced manning, COVID-19 associated reduced deployment opportunities, and evolving operational needs affected the number of instruments deployed for the current reporting period.  All instruments are listed as no longer/not currently sending data to GTS because they were deployed nearly a year ago, and have expended their operational lifetime.



PLANNED PROGRAMMES:


	Agency or programme

	Global Drifter Program (GDP)


	Number and type of buoys
	planned for deployment in the next 12 months
	1000 drifters
(800 funded by NOAA;
200 by consortium partners)

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	global




	Agency or programme

	US Interagency Arctic Buoy Program (USIABP)


	Number and type of buoys
	planned for deployment in the next 12 months
	20 SVP-B
30 Ice Balls (drogue-less SVP-Bs)
14 AXIB met. buoy
12 Ice Mass Balance (IMB) buoys
9 Ocean Profilers
80 Other (lots of iceberg tags)

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Arctic





	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC) 
Moored Buoys (MET/OCEAN)


	Number and type of buoys
	planned for deployment in the next 12 months
	41

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Atlantic and Pacific Oceans and Coastal Zone of the US, including the Bering Sea, Gulf of Mexico, and Great Lakes




	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC) 
Tsunameter Stations

	Number and type of buoys
	planned for deployment in the next 12 months
	37

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Atlantic and Pacific Oceans and Gulf of Mexico


	

	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ National Weather Service (NWS)/ National Data Buoy Center (NDBC) 
Tropical Atmosphere Ocean (TAO) Project

	Number and type of buoys
	planned for deployment in the next 12 months
	37, 
3 subsurface moorings

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[ ]

	Main deployment areas
	Equatorial Pacific





	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ Pacific Marine Environmental Laboratory (PMEL) and Atlantic Oceanographic and Meteorological Agency (AOML)
Prediction and Research moored Array in the Tropical Atlantic (PIRATA)

	Number and type of buoys
	planned for deployment in the next 12 months
	18

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[ ]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Tropical Atlantic


	

	Agency or programme

	National Oceanic and Atmospheric Administration (NOAA)/ Pacific Marine Environmental Laboratory (PMEL)
Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA)

	Number and type of buoys
	planned for deployment in the next 12 months
	17 surface toroids,
4 subsurface ADCP moorings

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[ ]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[ ]

	Main deployment areas
	Tropical Indian Ocean




	Agency or programme

	Coastal Data Information Program (CDIP)


	Number and type of buoys
	planned for deployment in the next 12 months
	~5

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[x]

	
	(c) developmental
	[x]

	Main deployment areas
	Pacific Western, Atlantic, Gulf of Mexico, 
Gulf of Alaska, Carribean




	Agency or programme

	Naval Oceanographic Office (NAVOCEANO)


	Number and type of buoys
	planned for deployment in the next 12 months
	~10 floats
~10 drifters

	Purpose of programme
(check/uncheck boxes using [_] or [x] as appropriate)
	(a) operational
	[x]

	
	(b) met / ocean research
	[ ]

	
	(c) developmental
	[ ]

	Main deployment areas
	Global




TECHNICAL DEVELOPMENTS:


No new T-Flex systems were implemented in the past year and none are planned for the coming year. T-Flex data are reported on the GTS in BUFR format with Bulletin Header IOBX08 KPML.  WMO numbers for T-Flex moorings take the 7-digit analog of the 5-digit code for the previous ATLAS system at the same site.  For example, the WMO number for the first T-Flex mooring implemented (4°S 81°E in RAMA) will be 2300010 (vs 23010 for the previous ATLAS moorings at that site).

A new generation of mooring data acquisition system, named TELOS, is currently being teested. These systems will offer increased flexibility for incorporating additional instrumentation and higher resolution real-time data transmissions. 

A standard tropical mooring sensor suite includes sensors for measuring wind, air temperature, relative humidity, barometric pressure, longwave and shortwave solar radiation, precipitation, subsurface temperature, conductivity, pressure, and currents. In addition to the standard mooring observations, partner projects offer additional measurements including CO2, turbulence, and fish tracking.  The Bay of Bengal Large Marine Ecosystem Project (BoBLME) supports a PMEL designed MapCO2 system for CO2 and ocean acidification observations at one RAMA site. Ancillary observations of turbulence are provided by Oregon State University employing thermal microstructure instruments (Chipods). GEOMAR provides sensors to measure subsurface dissolved oxygen (O2) in the Atlantic oxygen minimum zone. Two LOCEAN surface Carbon Dioxide (CO2) systems were deployed in FY 2022. Dalhousie University Ocean Tracking Network acoustic monitors are deployed on all RAMA and PIRATA surface moorings.

The next generation of the TAO buoy, referred to as a TAO Recap station, is currently being tested in the TAO array. To date there have been three successful field tests of the new technology, the first deployed at 5°N 125°W, the second at 0° 165°E, and the last at 0° 170°W. Each deployment is more complex than the previous. The new TAO Recap buoys once operational will offer value added capability such as additional mixed-layer observations and air-sea flux instruments along with higher resolution real-time data transmissions. The new TAO Recap array is being co-designed under the international collaborative Tropical Pacific Observing System (TPOS). 


SPECIAL COMMENTS (if any):	None.
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Fig. 1: Global Drifter Program deployment locations during the year.  
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Fig. 2: Global drifter array status as of 19 September 2022.  Figure from http://www.aoml.noaa.gov/phod/gpd.
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Fig. 3: Coastal Data Information Program (CDIP) monitoring locations.
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Fig. 4: NDBC Moored Buoys (MET/OCEAN), showing stations reporting in the last 8h (yellow) or not (red).  Figure from http://www.ndbc.noaa.gov/obs.shtml.  This image is for 20 September 2022.
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Fig 5: International Tsunami Network status, showing stations reporting in the last 24h (yellow) or not (red).  Figure from http://www.ndbc.noaa.gov/obs.shtml.  This image is for 20 September 2022.
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Fig. 6: NDBC Tropical Atmosphere Ocean (TAO) Array and TRITON Array status on 20 September 2022.  The numbers indicate how many days have passed since last servicing (ideally <365).  Figure from http://www.pmel.noaa.gov/tao/global/status/.




[image: ]
Fig. 7: PIRATA Array including PMEL/AOML Northeast Extension status on 20 September 2022.  The numbers indicate how many days have passed since last servicing (ideally <365).  Figure from http://www.pmel.noaa.gov/tao/global/status/.
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Fig. 8: International RAMA Array status on 20 September 2022. The numbers indicate how many days have passed since last servicing (ideally <365).  Figure from http://www.pmel.noaa.gov/tao/global/status/.
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