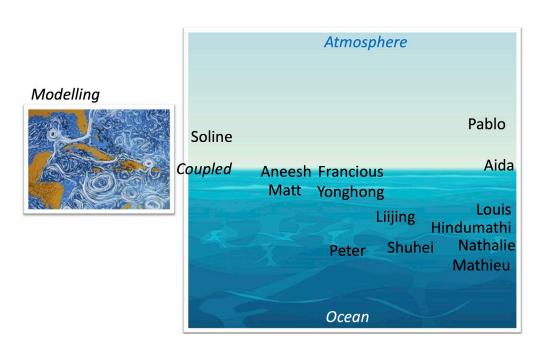
CLIVAR Global Synthesis and Observations Panel

Peter Oke¹ and Nathalie Zilberman² ¹CSIRO, ²SIO

Outline:


- GSOP on one slide ... who are we? what are our skills? what are our interests? what we do?
- What are our Joint Activities?
- What's our strength? And weakness?
- Ocean Decade, Lighthouse Activities/Challenges ...

CLIVAR GSOP ... on one slide

Recall the science-based points in our terms of reference:

"synthesis" refers to data-assimilation, reanalysis, forecasting, hindcasting, modelling, etc.

- Develop, promote, and implement strategies for ... synthesis ...
- Define requirements for ... observations ... and promote use ... in synthesis ...
- Develop metrics to evaluate ... syntheses
- Promote utility of synthesis products ...

Ken Dean Uwe Jose

GSOP Panel Members

Name Role			Institute	Country	
Nathalie Zilberman	Co- Chair	2023	Scripps Institution of Oceanography	USA	
Peter Oke	Co- Chair	2024	The Commonwealth Scientific and Industrial Research Organisation (CSIRO)	Australia	
Matt Mazloff	Member	2021	Scripps Institution of Oceanography	USA	
François Counillon	Member	2021	NERSC	Norway	
Lijing Cheng	Member	2021	Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS)	China	
Shuhei Masuda	Member	2022	Japan Agency for Marine-Earth Science and Technology (JAMSTEC)	Japan	
Louis Clement	Member	2022	National Oceanography Centre	UK	
Hindumathi Palanisamy	Member	2023	WCRP Secretariat	Switzerland	
Aneesh Subramanian	Member	2023	University of Colorado Boulder	USA	
Mathieu Belbeoch	Member	2023	OceanOPS	France	
Aida Alvera Azcárate	Member	2023	University of Liège	Belgium	
Yonghong Yin	Member	2024	Australian Bureau of Meteorology	Australia	
Soline Bielli	Member	2024	Laboratoire de l'Atmosphère et des Cyclones (LACy)	La Réunion, France	
Pablo Canziani	Member	2024	Consejo Nacional de Investigaciones Cientificas y Tecnológicas(CONICET)	Argentina	
Ken Ando	Ex officio		Vice-Chair / Tropical Moored Buoy Implementation Panel	Japan	
Dean Roemmich	Ex officio		co-Chair of the Argo Steering Team	USA	
Uwe Send	Ex officio		Co-chair / OceanSITES	USA	

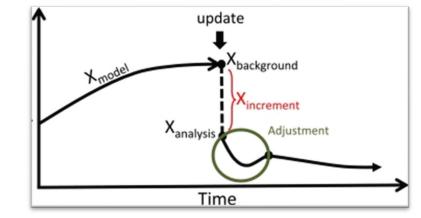
Joint Activities

- How does data assimilation of observations impact dynamical balance of models?
 - Understanding the elements of synthesis that rarely get considered
 - Can we learn how to better exploit observations by understanding what's done well, and what's done poorly in different systems?
- What metrics are most suitable for assessing data assimilating systems?
 - Most assessments report a standard set of statistical metrics: mean, standard deviation, root-mean-squared differences, mean absolute differences, correlations, ...
 - Can we do better?

How does data assimilation of observations impact dynamical balance of models?

- Understanding the elements of synthesis that rarely get considered
- Can we learn how to better exploit observations by understanding what's done well, and what's done poorly in different systems?

Proposed Approach

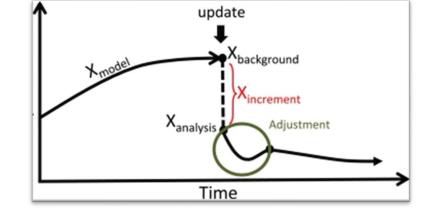

Compare dynamical balance of a model with and without assimilation.

Experiments can use as little as a single example/update.

- EXP BGF: background field at T=t
- EXP AN: analysis field at T=t
- EXP INIT: model field at T=t+dt

What's unique here?

- 1. Multiple model/analysis/assimilation systems
- 2. Multiple analysis systems, all filtered by the same model



How does data assimilation of observations impact dynamical balance of models?

Systems includes:

- Ensemble-based ocean reanalysis, 1/10°-res (CSIRO)
- Ensemble-based OI analysis, 1/10°-res (CSIRO)
- 4dVar ocean-BGC, 1/4°-res (SIO)
- OI ocean analysis, 1°-res (IAP-CAS)
- Coupled atmos-ocean, 1°-res (NERSC)
- Coupled atmos-ocean, 1.4°-res (BoM)
- Limited-area atmos, 1/20°-res (LACy)

... mix of data-assimilating models and analysis systems ... models will include assessment of initialization ... analysis systems will be limited to diagnostic metrics

What metrics are most suitable for assessing data assimilating systems?

- Most assessments report a standard set of statistical metrics: mean, standard deviation, root-mean-squared differences, mean absolute differences, correlations, ...
- Can we do better?

Metrics:

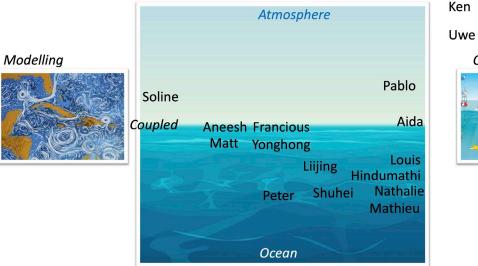
For BGF and AN:

- Volume, mass, energy, vorticity
- Density inversions instabilities

...

For BGF, AN, and INIT:

- Amplitude of vertical velocity: an indication of divergence, and therefore geostrophy (recall that geostrophic fields are non-divergent)
- Amplitude of ageostrohic field
- Rossby number noting that Ro>1 indicates highly non-linear regime


 $Ro = (V_x - U_y)/f$

What's the strength of CLIVAR GSOP?

What's our strength?

• Mix of ... data assimilation/modelling and observational researchers;

... ocean, coupled, atmosphere-focussed researchers

What's the strength of CLIVAR GSOP?

What's our strength?

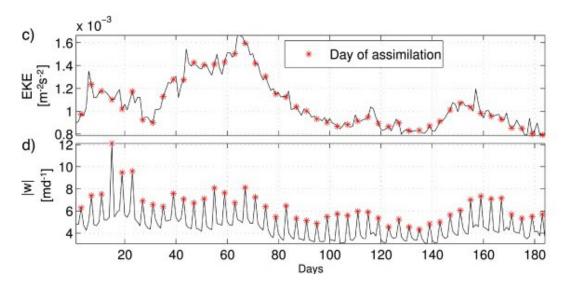
• Mix of ... data assimilation/modelling and observational researchers; ... ocean, coupled, atmosphere-focussed researchers

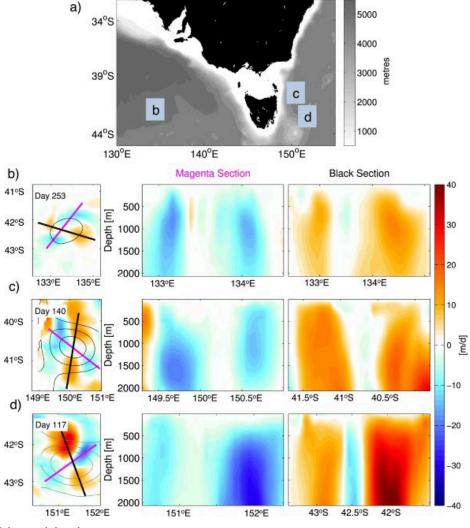
What's our biggest challenge?

• Mix of ... data assimilation/modelling and observational researchers;

... ocean, coupled, atmosphere-focussed researchers

			Atmos	phere		Ken	Dean
						Uwe	Jose
Лodelling						Observing	
	Soline						
	Coupled		Francio Yongho Peter	ng Liiiing	Aida Louis indumathi Nathalie Mathieu		
			Ocean				


Links to Ocean Decade, Lighthouse Activities/Challenges, ...


We really have no coordinated engagement from our Panel, but ... individuals on our panel have strong engagement:

- Decade Programs:
 - ForeSea
 - Co-Design
 - Observing Together
 - DITTO
- Decade Projects:
 - OneArgo
 - SynObs
 - ...
- WCRP Lighthouse Activities/Challenges:
 - Ocean Twin
 - Regional Sea-level Change and Coastal Impacts

How does data assimilation of observations impact dynamical balance of models? What metrics are most suitable for assessing data assimilating systems?

- *Example*: how does data assimilation impact the vertical velocities around an eddy?
- Findings: adjustments are unbalanced, with divergent properties?
- Implications: Greater attention to balanced data assimilation is warranted.

Pilo, G.S., Oke, P.R., Coleman, R., Rykova, T. and Ridgway, K., 2018. Patterns of vertical velocity induced by eddy distortion in an ocean model. *Journal of Geophysical Research: Oceans*, 123(3), pp.2274-2292.