

ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

Audrey Gailler & Mauricio Gonzalez

Presently:

 Evaluation of the potential tsunami threat and quick response for appropriate action based TWS decision matrices built on the relationship between first earthquake source parameters and expected tsunami size.

Data required to improve the tsunami risk and hazard assessment:

- Tectonic setting (active seismic faults DB)
- Seismic catalogues
- Updated bathymetry in open seas
- Detailed topo-bathymetry at the coast
- Soil condition, land use
 - infrastructures, port facilities, industrial plants, tourists resorts, population distribution...
- Historical events for benchmarking

=> basis for **decision support mechanisms** to implement appropriate mitigation and preparedness measures to reduce the risk for coastal communities

EU projects including tsunami hazard assessment, vulnerability and risk:

TRANSFER (2006-2009), ASTARTE (2013-2017), TSUMAP-NEAM (end 2018)

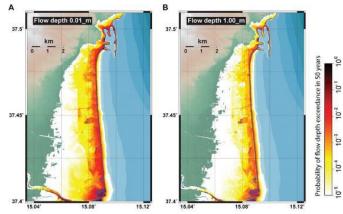
Four Strategic objectives for 2030

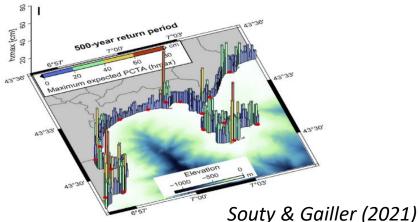
ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

Objective 1: Implementation of probabilistic methodologies

- Regional PTHA as input for tsunami risk assessments and warning systems
 - Integration of all potential tsunami sources and effects
 - Complete hazard curves
 - Probability maps
 - Disaggregation of probability distributions to run any kind of possible scenarios
 - Basis for national PTHA efforts

The TSUMAP-NEAM model yields a picture of long-term PTHA of the NEAM region


ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

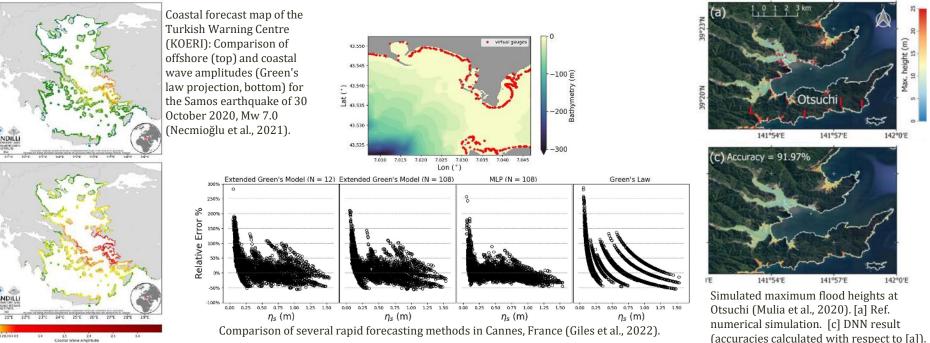

Objective 2: Member states to develop specific tsunami hazard/risk assessment for vulnerable national sub-regions

• Encourage PTHA at a national level

 \Rightarrow improvement for risk assessment, long-term risk mitigation, evacuation plans,...

- Work on a **common understanding of the best viable practices** in regional and national PTHA to comply with scientific and policy standards at a global level
 - State of the art on PTHA methodologies and application guidelines in countries
 - Need to address how hazard should be propagated to risk
 - Methodologies for probabilistic evacuation maps and criteria to define return periods
 - Create guidelines to elaborate TsunamiReady flooding maps & for local emergency plans.
 - Need to identify if/how models can help refining end-off/cancellation for SOP

Gibbons et al. (2020) Presentation S. Lorito 29/11 : From PTHA to planning and evacuation maps in Italy



ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

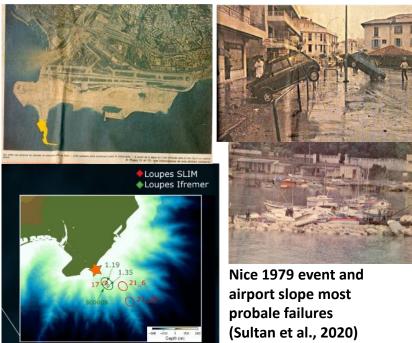
Objective 2: Member states to develop specific tsunami hazard/risk assessment for vulnerable national sub-regions

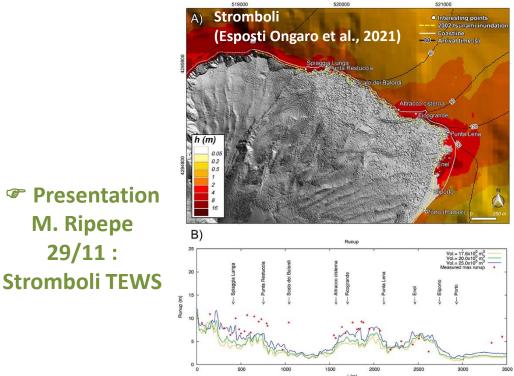
- Pursue deterministic studies
 - Amplification laws
 - Use of disaggregation techniques from PTHA models
 - HR coastal forecast from ML (including inundation estimate and land threat)
 - Benchmarking on historical and recent events

\Rightarrow valuable for identification of specific tsunami hazard and risk at a sub-regional level

ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

Objective 3: Develop regional hazard assessment for landslide-generated tsunamis


- Either submarine or sub-aerial => both can produce local tsunamis in the NEAM area
- **Deterministic approaches** (local, well identified targets)
 - Benchmarks to create
 - Stromboli, e.g. 2002 eruption (Esposti Ongaro et al., 2021)


- Nice airport 1979, ...?
- **Probabilistic approaches** (depending on the degree of knowledge of potential sources)

M. Ripepe

29/11 :

Nice airport, DT-GEO project

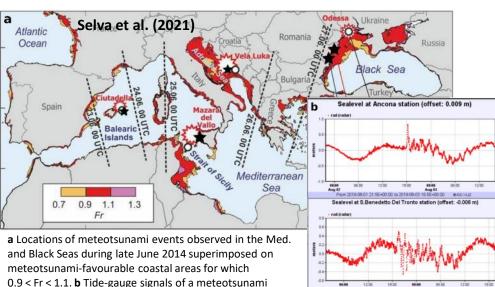
01-18 01

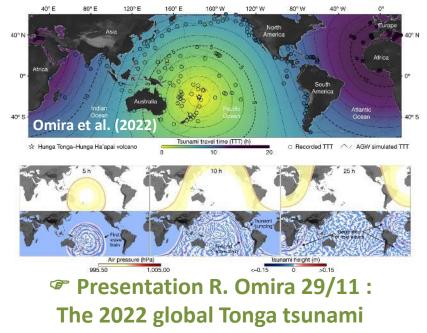
ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

Objective 4: Multi-source tsunami hazard assessment

- Consider the different sources generating probability of occurrence and uncertainties
 - Earthquakes

recorded in the central Adriatic Sea in August 2019.


- Landslides and volcanic activity
- Meteo-tsunamis
- Asteroid impacts
- \Rightarrow Should be facilitated by PTHA methods
- \Rightarrow Estimate the probability of exceeding specific levels of tsunami intensity metrics (run-


01-15 01

01-15 13

01-16 01

up,...) at POI, through hazard maps/curves

tsunamis, their relative intensities,

Tonga event recorded at Solenzara (Corsica) TG

ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

What can we learn from others?

(based on a review on tsunami monitoring, EW and hazard assessment in the Pacific ocean; Mori et al., 2022)

- Earthquake magnitude alone does not characterize the size and impact of the ensuing tsunami disaster
 - Need of constrain on coastal geomorphic features, densely populated area exposure
- PTHA and PTRA = Recently developed method of considering the variability of tsunami conditions for risk mitigation
 - Can be used in engineering design
 - Can be used to draw up tsunami inundation maps at different return period levels
 => to plan local and regional hazard mitigation
 - Methodologies and tools for Probabilistic hazard and Risk assessment in harbors
 - Probabilistic Evacuation maps and criteria to define Return period
- Mitigation of future tsunami risks goes through a better modeling reproduction of flow velocities and possible run-up in urban areas
- Long-term tsunami assessments to inform authorities about requirements for software (evaluation, assessment, planning) and hardware/structural (e.g., sea walls) countermeasures

Commission

Cultural Organization

ICG/NEAMTWS 2030 Strategy of Pillar 1: Tsunami hazard and risk assessment

Thank you for your attention