Ocean Mixing

as an Emerging Essential Ocean Variable (EOV)

Arnaud Le Boyer (SIO), **Nicole Couto** (SIO), Laura Cimolli (SIO), Bruce Howe (UH)

Ocean Mixing

as an Emerging Essential Ocean Variable (EOV)

Arnaud Le Boyer (SIO), **Nicole Couto** (SIO), Laura Cimolli (SIO), Bruce Howe (UH)

Ocean Mixing Drivers, Mechanisms and Impacts

"the three-dimensional turbulent interleaving and blending of oceanic waters with different properties." Ocean Mixing as an Essential Ocean Variable

Le Boyer, Couto, et. al (in prep.)

<u>Ocean Mixing as an emerging EOV</u>

Relevance: The variable is effective in addressing the overall GOOS Themes – Climate, Real-Time Services, and Ocean Health.

Feasibility: Observing or deriving the variable on a *global scale* is technically feasible using proven, scientifically understood methods.

 \downarrow

Cost effectiveness: Generating and *archiving data* on the variable is affordable, mainly relying on *coordinated observing systems* using proven technology, taking advantage where possible of historical datasets.

What is ocean mixing?

Ocean mixing refers to turbulent processes occurring at small spatial (1 m) and temporal (seconds to few minutes) scales that lead to the diabatic transformation of water masses.

Mathematically, we describe this with turbulent fluxes - the rate at which a tracer moves across a boundary.

What is ocean mixing?

Ocean mixing refers to turbulent processes occurring at small spatial (1 m) and temporal (seconds to few minutes) scales that lead to the diabatic transformation of water masses.

Mathematically, we describe this with turbulent fluxes - the rate at which a tracer moves across a boundary.

Diffusivity describes how readily temperature, salinity, dissolved nutrients, etc can move across isopycnals in the ocean.

Mixing rates describe how quickly energy is dissipated.

The upwelling branch of the thermohaline circulation relies on turbulent mixing. •

- Bottom flow
- Deep Water Formation 0
- Mixing-driven upwelling \odot
- Salinity > 36 ‰
- Salinity < 34 ‰

- N
- W Weddell Sea
- R Ross Sea

• Many climate models fail to accurately simulate the seasonal cycle of the sea surface temperature in the equatorial cold tongue.

χpods on moorings at the TAO array

 Moum et al used a multi-year timeseries of heat flux computed from xpods to show that SST is related to mixing in the thermocline.

- Jan-Jun: surface heat flux > flux across thermocline
- Jul-Dec: flux across thermocline > surface heat flux

χpods on moorings at the TAO array

Equatorial SST warms when atmospheric heating exceeds cooling • from mixing below, and cools when mixing exceeds atmospheric heating.

2 Niño 3.4 а La Niña El Niño 20 а Sea surface heating Sea surface cooling 0 27 30-150 40 sea surface temperature 50-Depth (m) SST (°C) LOST þ 100 26 sufface heat flux 60 2 log₁₀ J_a (W m⁻²) Cooling 70 u (m s⁻¹) 0 50 Heating 1 2 3 0 -2 80 ilux in the Amocline 25 90 2009 2006 2007 2008 2010 2011 Mar. May Jul. Sep. Nov. Jan. Jan. Year Month Moum 2013

xpods on moorings at the TAO array

Heat flux (W m⁻²

• Turbulent mixing has a significant impact on air-sea fluxes

Ellison, E. (2022). Hypersensitivity of Southern Ocean air-sea carbon fluxes and biological productivity to turbulent diapycnal fluxes (No. EGU22-3665). Copernicus Meetings.

(c)Northward cumulative CO_2 flux

- Turbulent mixing has a significant impact on air-sea fluxes
- Altering the mixing in an eddy-permitting ocean model alters the distribution of inorganic carbon, alkalinity, temperature, and salinity
- These changes alter the biological productivity, which affects the total carbon flux

<u>Feasibility / Technological maturity</u>

Coordinated efforts

rosette.

Coordinated efforts

can make global estimates of dissipation from density profiles and strain parameterizations.

Whalen 2018

Coordinated efforts

ARGO network:

can make global estimates of dissipation from density profiles and strain parameterizations.

ARGO-MIX: can directly measure dissipation rates

with new on-board processing capabilities

Based on Readiness Levels, Ocean Mixing should be considered an emerging EOV

	Level 1 Idea	Level 2 Documentation	Level 3 Proof of concept	Level 4 Trial	Level 5 Verification	Level 6 Operational	Level 7 Fitness for purpose	Level 8 Mission qualified	Level 9 Sustained
Requirements				Drifters / Profiling floats Wirewalkers Moored profilers (e.g. McClane)	Gliders AUVs (propelled)	AD	DVs		
Coordination			Arg		GO-SHIP Argo-MIX				
Data manage ment					Open data repositories ATOMIX SCOR				

Ocean Bottom Pressure

An advantage of OBP sensors is their ability to resolve time/space scales through regional arrays and the variability of large-scale circulation on time scales of *days*, *weeks*, and *months* (especially at latitudes >40° where surface/deep flows are coupled)

For periods <1 day, OBP is sensitive even to weak

- gravitational tides
- internal tides
- internal waves
- tsunamis and other infragravity waves
- storm surges

Observing tsunamis is a critical task for GOOS!

Determining accurate tidal constants, including secular changes, is possible due to low geophysical "noise" at the seafloor

- essential to de-aliasing and correcting other measurements (e.g. those from satellite altimetry)
- provides essential information about structure of Earth's crust and vertical deformation of the seafloor

Berneneihle	0000						
Responsible	OUPC						
GCUS/GOUS Parier	CCOS Implan	antation Dian	Ctatus Daparti				
Reporting Mechanism	GCOS implementation Plan/Status Reporting to UNFCCC						
Readiness Level ⁵	Mature Level networks full	8. [Several bas y operational,	sin-scale and re e.g., DART; OO	egional teleme I RCN; ONC; D	telemetering DNC; DONET; ACO.]		
Phenomena to Capture	Sea Level	Circulation	Fronts and Eddies	Tides	Infragravity Waves and Tsunamis		
Temporal Scales of the Phenomena (order)	Week to decade	Week to decade	Day to month	Hour to week	Minute to hour		
Horizontal Scales of the	10 km to	10 km to	1 km to	10 km to	1 km to		
Phenomena (order)	10,000 km	10,000 km	100 km	10,000 km	1,000 km		
Magnitudes of the Signals of the	0.01 dbar to 1.0 dbar	0.01 dbar to 1.0 dbar	0.01 dbar to 1.0 dbar	0.001 dbar to 1.0 dbar	0.001 dbar to 1.0 dbar		

Justin Stopa | stopa@hawaii.edu

Ocean Bottom Pressure

- Ocean bottom pressure (OBP) is the total pressure resulting from the mass of the column
 of seawater and the overlying atmosphere
 - Fluctuations in the atmospheric sea level pressure (the dynamic topography) and fluctuations in the mass of the fluid column between the unperturbed surface and bottom contribute to the observed OBP variability
 - OBP serves as a proxy of ocean mass variability
 A key parameter needed in many geophysical applications (e.g. large-scale ocean circulation important for climate) or variability in the Earth's gravity field
 - OBP observations can provide estimates of both basin-wide modes of transport between OBP sensors located on opposing continental slopes and local bottom current amplitudes related to local energetic circulation

GBP observations are needed to improve the accuracy of global ocean circulation and are a key parameter needed to calibrate and improve remote sensing missions that measure the mass changes in the ocean like Gravity Recovery and Climate Experiment (GRACE)

Justin Stopa | stopa@hawaii.edu

Ocean Bottom Pressure

iDOOS

Examples of available networks and datasets

Observing Elements ⁶	DART Stations	DONET, OOI RCN, ONC, ACO	Moorings (OceanSITES, DBCP)	GRACE	
Relevant measured parameter	Pressure	Pressure	Pressure	Gravity perturbations	
Measurement Type	in-situ	in-situ	in-situ	remote	
Sensor(s)/Technique	SBE 54 Tsunami Pressure Sensor	SBE 54 and Paroscientific Nano-resolution Digiquartz Pressure Transducer	Paroscientific Digiquartz Pressure Transducer, e.g., incorporated in PIES instrument./	Inversion of relative positions and speeds of paired satellites.	
Phenomena addressed	Infragravity waves Tsunamis Tides Sea level	Infragravity waves Tsunamis Tides Eddies Sea level	Tides Fronts and eddies Circulation Sea Level	Circulation Sea Level	
Readiness Level	Mature Level 8	Mature Level 8	Mature Level 8	Mature Level 9	
Spatial sampling	Specific locations; 100's of km spacing and up	Specific locations; 1 km to 100's of km spacing	Point samples; fixed locations at tens of km spacing and up	100's of km	
Temporal sampling	15 s to 15 min	1 Hz	Better than 1 Hz to several samples per hour	Monthly gridded maps	

Scales resolved by current technologies

Justin Stopa | stopa@hawaii.edu