

Item 4 - EOV & ECV requirement setting

Belén Martín Míguez, OOPC officer

OOPC 25, 21 October, EUMETSAT HQ, Darmstadt, Germany

GCOS · GOOS · WCRP OOOPOC Ocean Observations Physics and Climate panel

Item 4 - EOV & ECV requirement setting

1. EOV and ECVs framework revisited

2. New EOVs/ECVs (before/after lunch)

3. WMO Rolling Review of Requirements (after lunch)

GCOS · GOOS · WCRP OOOPPC Ocean Observations Physics and Climate pane

EOV framework revisited

- O

10 year of EOV framework: successful but...

The process is not transparent

• Criteria are clear, but the assessment process isn't

Essential Climate Variables (ECVs, GCOS) (ECVs, GCOS) (Errestrial (Errestrial (ECVs, GCOS) (Errestrial (ECVs, GCOS) (Errestrial (ECVs, GCOS) (Errestrial (ECVs, GCOS) (ECVs, GCOS)

The relationship with other EV frameworks needs to be clarified

• E.g. overlap and duplication with GCOS ECV framework

Ocean communities inside and outside GOOS are proposing new variables – 0019

• Can GOOS EOV framework incorporate them all?

ECV framework revisited

15 year of ECV framework: successful but...

There are too many variables

 Do we need different ECVs for different domains?

DOMAIN	ECV	ECV PRODUCT
Atmosphere	Surface Radiation Budget	Upward Long-Wave Irradiance at
Atmosphere	Surface Radiation Budget	Earth Surface
Atmosphere	Surface Radiation Budget	Downward Long-Wave Irradiance
Atmosphere	Surface Natiation Budget	at Earth Surface
Atmosphoro	Surface Padiation Budget	Downward Short-Wave
Atmosphere	Surface Radiation Budget	Irradiance at Earth Surface
Ocean	Ocean Surface Heat Flux	Latent Heat Flux
Ocean	Ocean Surface Heat Flux	Sensible Heat Flux
Ocean	Ocean Surface Heat Flux	Radiative Heat Flux
Terrestrial	Evaporation from Land	Latent Heat Flux
Terrestrial	Evaporation from Land	Sensible Heat Flux
Terrestrial	Evaporation from Land	Bare Soil Evaporation
Terrestrial	Evaporation from Land	Interception Loss
Terrestrial	Evaporation from Land	Transpiration

Lack of coherence:

- what is a product?
- accuracy vs. stability
- Specific domain terms

Requirements

Value Notes

- 0.1 The length scales required to detect spatially heterogeneous responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).
 - Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).
- 25 Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).

"Climate applications" is too broad, and greater granularity is needed...

What's wrong?

GCOS · GOOS · WCRP Ocean Observations Physics and Climate panel

Are we missing something? Extra variables

- Are we "too shallow"?
 presentations from DOOS
- Are we "too global"? Regions need other set of variables. We are not considering coastal processes
- Should some products become ECVs/EOVs→ presentations from Sea Ice
- Do all ocean ECVs need to be EOVs and vicecersa?

Rationalization and Homogeneization

- Does it make sense to talk about currents and temperature at different depths and consider them different variables?
- Should we work towards more harmonization with the other panels? Similar vocabulary, units...

New specification sheets - EOVs

Ocean Surface Heat Flux

Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Oceanographic convention is that a positive flux implies heating of the ocean. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. Downward shortwave at the surface is predominantly visible light. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater and is absorbed with deth. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for themodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.

Sensible and latent heat fluxes have traditionally been estimated through bulk formulae with the aid of the observations of SST, near surface air temperature and humidity, surface winds, waves, and surface air pressure. These estimate have regional and seasonal biases because of assumptions and missing wave data. We now measure or infer the above bulk variables from satellite observations, therefore it is clear that these fluxes can be globally estimated from satellite; however, this is currently hampered by limited ground truth. At a very limited number of locations, direct measurements of the sensible and latent heat flux are being made on buoys and ships using fast-response, three-dimensional wind sensors together with fast-response air temperature and humidity sensors. These sensors, together with the observations needed to correct for platform motion, allow direct computation sensible and latent heat flux through covariance flux methods. There have been efforts to estimate radiative fluxes from visual cloud estimates, but even monthly averages are very noisy. Radiative fluxes can be measured dincetly from buoys, ships, and other ocean platforms using sensors to measure downward shortwave and longwave. Buoys that measure surface meteorology as well as downward shortwave and longwave. Constitute all four components of ocean surface heat flux.

Air-sea exchanges (fluxes) are sensitive indicators of changes in the climate system, with links to floods and droughts¹, and East Coast storm intensity and storm tracks² and tropical storm intensity. On longer temporal scales, several well-known climate variations (e.g., El Niño/Southem Oscillation, North Atlantic Oscillation, Pacific Decadal Oscillation) are associated with variability in these fluxes and hypothetically impact of changes of these fluxes on regional economies, populations and infrastructure. For example, the contribution to the water cycle alone is often extremely important. Improved predictions of ENSO phase and associated impact on regional weather patterns could be extremely useful to the agricultural community. These fluxes also contribution to cool wakes behind tropical cyclones, which influence the intensity of tropical cyclones later (up to a month) in the season. These fluxes will be critical for successful coupling of ocean and atmospheric models (a well as ice models) for the purpose of climate forecasts.

Version 5.2 Updated January 2017 by OOPC.

itoSave		2 ° C			4-Ocean H	leat Fluxes Req	uirements_20	20 • Last Modifie	ed:3hago ∽		9 Belén Martín I	Míguez BM
ŀ	lome Inser	Pag	e Layout	Formula	s Data	Review	View De	veloper He	p Acrobat			
	• : X	~	<i>f</i> x ⊺in	neliness is	the delay bet	ween the ob:	servation ar	nd the data bei	ng available. T	his only applies to	ocurrent observation	ns, not to re
	C		D	E	F	G	Н	1	L U	к	L	М
	ocean and atmosphe	re associated			100km		Daily		10Wm^-2	2Wm^+2	Mixed Layer, Extreme Events,	
IX.	with the phase chang	te from liquid			25 km		3.Hourie				Stratification, Storage	
teads	evaporation or from	gas to liquid			69 MII		arrowny		10 Wm^-2	2Wm^-2	Sea Level, Heat Storage, Water	
	during condensation	der is vilain			10km		Hourly		10Wm^-2	2Wm^-2	masses, Circulation.	Climate
	atmosphere and oce	an when a			100km		Daily		10Wm^-2	2Wm^-2	Stratification, Storage	
eat Flux warmer ocean warms or when a cooler ocean	s the air above		1	25km		3-Hourly		1010-0.2	2WmA 2	(Freshwater), Sea Ice extent,		
	or when a cooler oce	an cools the			101.00		Heurin		TOALUL-2	5 W III	Sea Level, Heat Storage, Water	
	air above.	aturees the			20Km		nouny		10Wm^-2	2Wm^-2	masses, Circulation.	Climate
	ocean and atmosphe	re resulting			100km		Daily					
	from the balance bet	ween radiation	a						10Wm^-2	2Wm^-2	-	
Flux	leaving the sea surfa	ce (reflected			25km		3-Hourly				Mixed Layer, Extreme Events,	
	and emitted) and rad	lation passing							10Wm*-2	2Wm^-2	Stratification, Storage	
	ocean: often divided	into an			10km		Houris				Sea Level, Heat Storage, Water	
	infrared or longwave	and a visible							10Wm^-2	2Wm^-2	masses, Circulation.	Climate
	ocean and atmosphe	re associated			100km		Daily	24 hours	1011-1-2	2001	Mixed Laver, Extreme Events,	
	with the phase chang	e from liquid							10Wm^+2	2Wm^+2	Stratification. Storage	
ux	to gas of seawater du	iring			25km		3-Hourly		10Wm^-2	2Wm^-2	(Freshwater). Sea Ice extent.	
	evaporation or from	gas to liquid			10km		Hourly	6 hours	100000.2	2WmA-2	Sea Level, Heat Storage, Water	Omerational Ser
	The near exchanged	etween the			100km		Daily	24 hours	201111-12	21110 T2	Plixed Layer, Extreme Events,	operational ser
	atmosphere and oce	in when a			avvinii			27 NV015	10Wm^-2	2Wm^+2	Stratification, Storage	
Iux	or when a cooler oce	an cools the	'		25km		3-Hourly		10Wm^-2		Sea Level, Heat Storage, Water	
	air above.				10km		Hourly	6 hours	10Wm^-2	2Wm^-2	masses, Circulation.	Operational Ser
	ocean and atmosphe	re resulting			100km		Daily	24 hours	10Wm^-2	2Wm^-2	Stratification, Storage	
Flux	from the balance bet	ween radiation		25km 3.Haudu 25km	(Freshwater). Sea Ice extent.							
iem ridx	leaving the sea surfa	ce (reflected			2010		C Library	()			Sea Level, Heat Storage, Water	
	and emitted) and rad	iation passing			10km		Hourly	0 hours	10Wm^-2	2Wm^-2	masses. Circulation.	Operational Ser

New specification sheets - ECVs

Year 2016

ECV Products and Requirements for Ocean Surface Heat Flux

These products and requirements reflect the Implementation Plan 2016 (GCOS-200). GCOS is reviewing and will update the requirements until 2022. More information on: gcos.wmo.int.

PRODUCT	DEFINITION	FREQ.	RES.	REQUIRED MEASUREMENT UNCERTAINTY	STABILITY	STANDARDS/ REFERENCES
LATENT HEAT FLUX	The heat exchanged between the ocean and atmosphere associated with the phase change from liquid to gas of seawater during evaporation or from gas to liquid during condensation.	Hourly to monthly	1-25km	10-15Wm ⁻²	1-2Wm ⁻²	See EOV Specification at www.goosocean.org/eov
SENSIBLE HEAT FLUX	The heat exchanged between the atmosphere and ocean when a warmer ocean warms the air above or when a cooler ocean cools the air above.	Hourly to monthly	1-25km	10-15Wm ⁻²	1-2Wm ⁻²	www.goosocean.org/eov
RADIATIVE HEAT FLUX	The heat exchanged between the ocean and atmosphere resulting from the balance between radiation leaving the sea surface (reflected and emitted) and radiation passing through the sea surface into the ocean; often divided into an infrared or longwave and a visible or shortwave components.	Hourly to Monthly	1-25km	10-15Wm ⁻²	1-2Wm ⁻²	www.goosocean.org/eov

Download shortened print version of ECV factsheet (pdf) here.

Data Sources

Ocean Surface Heat Flux

New specification sheets -

The 2022 GCOS ECVs Requirements

4.10 ECV: Ocean Surface Heat Flux

4.10.1 ECV Product: Radiative Heat Flux

Name	Radiative Heat Flux							
Definition	The net difference between radiation leaving the sea surface (reflected and emitted) and downward radiation impinging on the sea surface; commonly divided into an infrared or longwave and a visible or shortwave component $(Q_{LW,net} + Q_{SW,net})$; $Q_{LW,net} = LW + LW + e \sigma_{W}T^{*} + (1 - \varepsilon) LW + LW + e \sigma_{U}T^{*} - LW + (1 - \varepsilon) LW$							
	$Q_{LW,net} = LW + -LW + \epsilon \sigma_{SB} I_s^{-1} + (1 - \epsilon) LW + -LW + \epsilon (\sigma_{SB} I_s^{-1} - LW +)$							
	and $Q_{SW,net} = Q_{SW} \top - Q_{SW} \downarrow = Q_{SW} \downarrow (\alpha - 1)$ where ϵ is the IR surface emissivity ($\epsilon = 1$ for black-body emission), σ_{SB} is Stefan-Boltzmann constant, and T_s is the sea surface (skin) temperature that is emitting the IR-radiation, in degrees Kelvin. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo (α).							
Unit	W m ⁻²							
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Downward shortwave at the surface is predominantly visible light. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater, with red light absorbed close to the surface and blue light absorbed at deeper depths. These turbulent and radiative surface fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.							
				Requirement	ts			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G B T	10 25 100				
Vertical			G	-	N/A			
Resolution			P	-				
			т	-				
Temporal	h		G	1				
Resolution			в	3				
			т	24				
Timeliness			G	7				
			в	30				
			т	365				
Required	W m ⁻²		G	10				
Measurement			в	15				
(2-sigma)			т	20				
Stability	W m ⁻² /		G	1				
Stability	decade		B	2				
			т	2				
Standarde	Maabaa E. Co	nin et al.	(2010) Air-See Fluxer	with a Forus on Most and Manageture Functions in			
and	Marine Science	e, 6, articl	e 430), p1-30.	with a rocus on Heat and Momentum, Frontiers in			
References	https://www.f	rontiersin.	org/a	rticles/10.3389/fm	nars.2019.00430/full			
	Meyssignac, Benoit, et al. Measuring global ocean heat content to estimate the Earth energy imbalance" Frontiers in Marine Science 6 (2019): 432.							

New specification sheets – allowing for reporting EOV and ECV

Ocean Surface Heat Flux

Global Ocean Observing System (2023). Essential Ocean Variable Specification Sheet: Ocean Surface Heat Flux. GOOS Reference No; DOI: [to be assigned, <u>e-g-</u> by depositing on the EOV specification sheet curated by:

ande dobelje, upiepue monicus balegu och, organizavertisken at explose sindestille. Quiestue porta sodalestjectur, a alkaget ex finituestell, Nam outputp displositutpasteta. Brotindellus dui, utoces, in est at, tertiputa elementue, ante. Nullan Jacidis et lacus, vitae eleitand. Ut at die gravitous, existrad deus eu, effisitur, torios. Maessoas pasuers tomptus lauta, esst coelectie lacus, enistrad, ut. Boessoa, neo gausis at upis accurate brote las duigut. Integer non pulvinar diam. Nulla deilitei, totaduos, et upis accurate brote as ante ipsum pignje in ducibus. Beleotesaue habitant morbi tristique espectas, et optis, et galesada bore, as utois, essesas

Dorac ad occardi, Integer ut adautate capion. Euscertristique, daus capavallis, ubicion impediot, leo pretus avaito libero, nec capava, magna gibt at upo. Eusce, at gatija dales, non interdument. Curabitur aliauet lectur, eleitoro dale succious, and bacedogices, klandit. Curabitur in ante a eros fingilla elementum nec eu eros. Proin diam odio, venenatis a condimentum eu, viverra gravida mi. Sed quis orci elit. Nullam a ligula suscipit, elementum nunc dictum, euismod elit. Pellentesque lorem enim, finibus eget leo vitae, rutrum loboriti diam. Nunc faucibus hendrerit nisi vitae scelerisque. Sed dignissim mi at orci dapibus malesuada. Ut tincidunt enim ut risus mattis ullamcorper. Nam dignissim diam lacinia lacus consequat, et feugiat ante tristique. Aliquam erat volutat.

Donec sed eleifend dolor, quis rutrum est. Aliquam magna mauris, bibendum vitae mi vitae, posuere interdum purus. Nam hendrerit, justo vel gravida fringilla, sem odio aliquam arcu, non posuere leo lorem vel lorem. Belegioesue (tajkos lobarija, accusação, Duis non opcianação, Nulla, japosoja ex nec (alis, bibendum, vitae grația, orque, semper. Aliquago at ex quis graue, tacidud tradiçã es espetipsum. Aliquago esstavaçada eros, Aliquago delucida, esoberiesue, non capitipodujo quis, essetavant does Magnis vitars convalis, estaboriesue, non capitipodujo quis, essetavant does Magnis vitars convalis, estaboriesue, non capitipodujo quis, essetavant does Magnis vitars convalis, estaboriesue, setudo quis, essetavant does Magnis vitars convalis, est. setudor assuvat vadua, risus. Belegiopação, habitant codoi tradique que podus. apperuppeque: uppeque montais paper parte de la paperuppeque entra a paperuppeque entra apratecta parte de la paperuppe de la

Picture caption © Source details

Ocean Surface Heat Flux | 4

Essential Ocean Variable Specification Sheet

Ocean Surface Heat Flux | 3

EOV Information

Zonode repositors?

Name of EOV		Ocean Surface Heat Flux
EOV sub-variables		Radiative Heat 1 Sensitive Heat 2 Latent Heat 2
		[Space for optional comment/reference]
	ECV	Ocean Surface Heat Flux
Corresponding other Essential Variables	EBV	N/A
	Other	N/A
	SDG	(SDG #: Title)
Relevant global Indicators	CBD	[insert text]
	Climate	[insert text]
	other (e.g. regional such as MSFD)	[insert text]

Requirements setting: Phenomena

Essential Ocean Variable Specification Sheet

GOOS Applications / Societal Drivers / Pressures / Solentific Question		[insert text]					
Readinecc level		[insert text]					
Phenomena to capture		Mixed Layer	Phenomenon #2	Phenomenon #N			
horizontal		Global	[Refer to list of options]	[Refer to list of options]			
Coverage	depth	surface	[Refer to list of options]	[Refer to list of options]			
Spatial scale/resolution	horizontal	10 km	[insert text]	[insert text]			
[order of magnitude]	vertical	N/A	[insert text]	[insert text]			
Temporal scale/resolution		hourly	[insert text]	[insert text]			
Signal to capture		range: -1500 - 1000Wm^-2	[insert text]	[insert text]			
EOV orthogology required		Sensible Heat Flux, Latent Heat Flux, Solar and IR Radiative Heat Flux	[insert text, comma-separated]	[insert text, comma-separated]			
Relevant global indicators		[insert text, comma-separated, hyperinked]	[insert text, comma-separated, hyperinked]	[insert text, comma-separated, hyperinked]			

New specification sheets - ECVs

Physics	Biochemistry	Biology and Ecosystems
 Sea state Ocean surface stress Sea ice Sea surface height Sea surface temperature Subsurface temperature Surface currents Subsurface currents Subsurface salinity Subsurface salinity Ocean surface heat flux 	 Oxygen Nutrients Inorganic carbon Transient tracers Particulate matter Nitrus oxide Stable carbon isotopes Dissolved organic carbon 	 Phytoplankton biomass and diversity Zooplankton biomass and diversity Fish abundance and distribution Marine turtles, birds, mammals abundance and distribution Hard coral cover and composition Seagrass cover and composition Macroalgal canopy cover and composition Mangrove cover and composition Microbe biomass and diversity (*emerging) Invertebrate abundance and distribution (*emerging)

Cross-disciplinary (including human impact)

 Ocean colour
 Marine debris (*emerging)

EOVs GOOS	OOPC	BGC	BioEco	cross
31 ECVs	11	8	10	3
~ 20 subvariables	20	20	20	

Ocean sound

ECVs GCOS	AOPC	OOPC	TOPC
55 ECVs	16	19 (11, 6, 2)	20
174 ECV products	75	44 (20, 15, 8)	55