

Sea Level Monitoring Instruments, Limitations, and Challenges

Dr. David Walsh
Senior Oceanographer, PTWC
Dr. Laura Kong
Director, ITIC
Dr. Dailin Wang*

Senior Oceanographer, PTWC

PTWC Global Sea Level Network

All Stations by Owner

All Stations

Why Sea Level Gauges are Needed

- □ To verify if a tsunami exists or not
- To measure tsunami size for decision-making
 - Compare with historical data
 - Constrain forecast model
- □ To aid in response
 - How bad was it?
 - Is it safe to go in/return?

Two Basic Types of Sea Level Gauges

□ Coastal

- Good for comparison with historic events
- Observation at coast used to authoritatively cancel warning
- Heights sensitive to local effects (coastal shape, bathymetry, etc)

Deep Ocean

- Best for constraining forecast models. Heights not affected by local effects – 'pure' tsunami signal
- Observations in deep water. Not likely to be destroyed by wave
- Forecast models are required to interpret deep-ocean observations

Typical Coastal Gauge

- Mechanical level
- □ Acoustic sensor
- □ Pressure sensor
- □ Radar/Microwave

Sea Level Observation equipment – Japan - JMA

Microwave/Radar in the Open Air

Float gauge Stilling Well

in the

Acoustic gauge with Sounding Tube

Instruments

Fuess type gauge

Microwave/ Radar gauge

Pressure sensor

Examples of Caribbean Stations

Wet sensor (run-up detector)

It does not measure sea level, only detects if it submerged in water.

When it does, a flooding signal is transmitted to PTWC via cell modem.

Run-up detector in Milolii, Hawaii Island

Wet sensors on Hawaii Island

Communications tests are done about once day.

DEEP OCEAN, REAL TIME ASSESSMENT AND REPORTING OF TSUNAMIS

Deep-Ocean Gauge

The tsunami signal is detected by a pressure sensor on the ocean floor. That signal is relayed by acoustic telemetry to the buoy. The buoy in turn transmits the signal via satellite back to the warning centers.

Chile tsunami February 27, 2010 DARTs records

In case of big Tsunami, instrument stops working

Sea Level Gauge Data Streams

Sampling intervals

15s Optimal For TWS

1 minute Good For TWS

2 minute OK For TWS

6 minute Can be Used

15 minute Not useful for TWS

Transmission intervals

Real-time Optimal

3-6 minute Very Good

15 minute Good

1 hour
Poor

3 hours
Not useful

Removal of Astronomical Tide Signal

Harmonic analysis:

Representation of tidal signals as a superposition of sine and cosine functions:

tide(t) =
$$\sum a_i \cos(\omega_i t) + b_i \sin(\omega_i t)$$

 ω_i s are called harmonic constituents. ω_i , a_i , b_i are solved by least-square fit to the observations.

Analysis from using 1-2 years of data can predict the tides for Least one year or longer. Some times, the coefficients are good for 5-6 years.

People who are in the tide prediction business might use 5-10 years of data for tide prediction.

Raw data

Raw data (red) with predicted tide (blue)

Tohoku Tsunami Marigrams

PTWC Reporting of Observed Tsunamis

- □ Time of measurement
- Maximum Wave Amplitude above normal sea level and time of measurement

TEST... TSUNAMI OBSERVATIONS ...TEST

* THIS IS A TEST MESSAGE. THE FOLLOWING ARE TSUNAMI WAVE OBSERVATIONS FROM COASTAL AND/OR DEEP-OCEAN SEA LEVEL GAUGES AT THE INDICATED LOCATIONS. THE MAXIMUM TSUNAMI HEIGHT IS MEASURED WITH RESPECT TO THE NORMAL TIDE LEVEL.

	GAUGE		TIME OF	MAXIMUM	WAVE		
	COORDINATES		MEASURE	TSUNAMI	PE	PERIOD	
GAUGE LOCATION	LAT	LON	(UTC)	HEIGHT	(MIN)		
CONSTITUCION CL TALCAHUANO CL		72.5W 73.1W		6.42M/ 21 4.38M/ 14			

Limitations of Sea Level Data Analysis

□ Type of Sea Level Measurements

- Coastal Gauge
 - Most common
 - □ Signal highly modified by coastal effects well protected/resonant harbors tend to dampen/amplify tsunamis, thus readings might not be representative of tsunami hazards for the coastlines more/less exposed to the open ocean.
 - May be destroyed by large tsunami or clipped (wave higher than the housing, large draw down such that ocean bottom is exposed).
- Deep Ocean Gauge
 Less common, costly to deploy and maintain, only ~70% deployed are reporting data at any given time, might also have funding issues.
- Wet Sensors: on land, less expensive, only indicate if flooding has occurred

Challenges in warning cancellation

March 11, 2011 - 2 days tsunami records (Western Japan)

Thank You

Dr. David Walsh
Senior Oceanographer, PTWC
Dr. Laura Kong
Director, ITIC
Dr. Dailin Wang*
Senior Oceanographer, PTWC