

DBCP and OceanOPS

DBCP- 38, Hybrid meeting, Geneva, Switzerland, 1-4 November 2022 Long Jiang

LJiang@ocean-ops.org, LJiang@wmo.int

OUTLINE

- Overview
- Data sharing and quality control
- Key variables (SST, AP, Wave, etc.)
- EXB, TTs, AGs, etc.
- Issues and proposed way forward

WMO Vision, Mission, Objectives and Strategy

VISION 2030

By 2030, we see a world where all nations, especially the most vulnerable, are more resilient to the socioeconomic consequences of extreme weather, climate, water and other environmental events; and underpin their sustainable development through the best possible services, whether over land, at sea or in the air (and in space)

OVERARCHING PRIORITIES

Preparedness for, and reducing losses from hydrometeorological extremes

Climate-smart decision-making to build resilience and adaptation to climate risk

Socioeconomic value of weather, climate, hydrological and related environmental services

CORE VALUES

Accountability for Results and Transparency

Collaboration and Partnership

Inclusiveness and **Diversity**

LONG-TERM GOALS

Services

Infrastructure

Science & **Innovations**

Advance targeted research

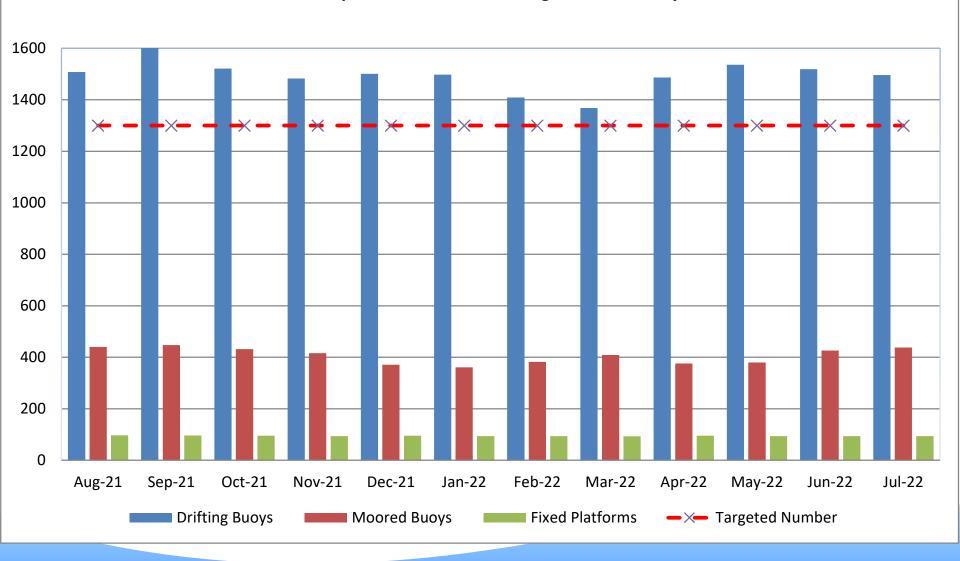
1 Member Services

5 **Smart** Organization

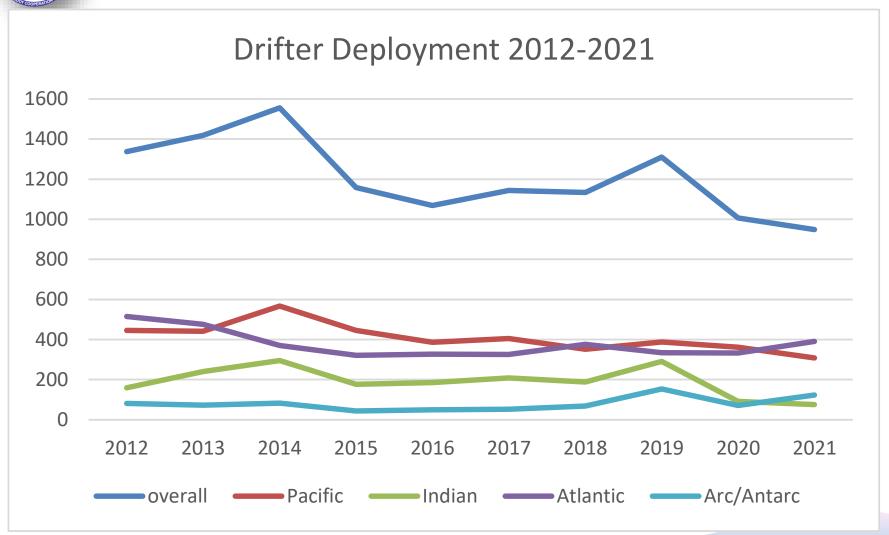
STRATEGIC OBJECTIVES

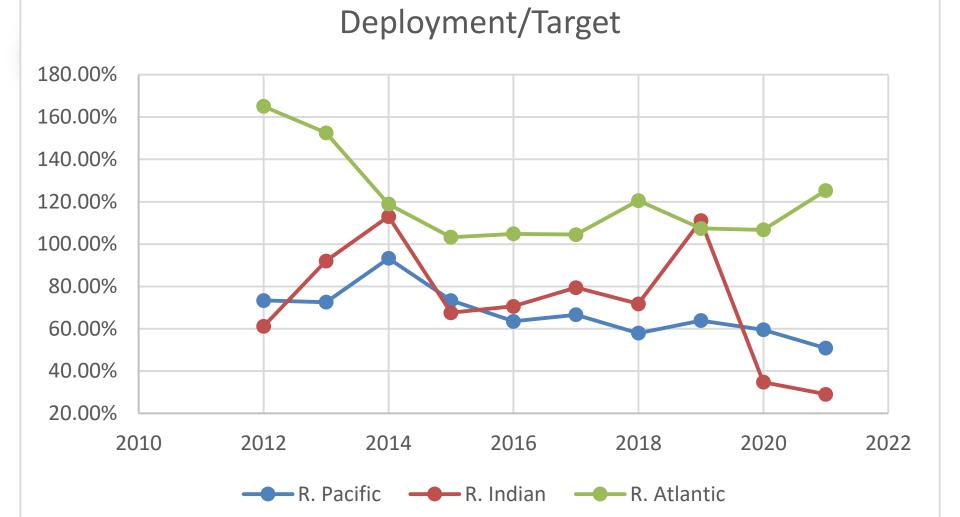
FOCUSED ON 2020-23

- · Strengthen national multihazard early warning/alert systems
- · Broaden provision of policy- and decisionsupporting climate, water and weather services
- Optimize observation data acquisition
- Improve access to, exchange and management of Earth system observation data and products
- Enable access and use of numerical analysis and prediction products
- Advance scientific knowledge of the Earth system
- Enhance science-forservice value chain to improve predictive capabilities
- Advance policy-relevant science
- **Enable developing** countries to provide and utilize essential weather, climate, hydrological and related environmental services
- Develop and sustain core competencies and expertise
- Scale up partnerships


- Optimize WMO constituent body structure
- Streamline WMO programmes
- Advance equal, effective and inclusive participation

3




Number of Operational Platforms August 2021 to July 2022

Drifters

Indian Ocean Coordination Meetings
Bi-lateral agreements
BMKG

Coastal/national Moored Buoys

Global Tropical Moored Buoys

Tsunameters

BUFR Migration Moored Buoys

Country	Migration Rate
Australia	<mark>O</mark>
<mark>Canada</mark>	<mark>O</mark>
France	100%
Greece	100%
<mark>India</mark>	<mark>O</mark>
Ireland	100%
Portugal	100%
Norway	100%
Republic of Korea	<mark>O</mark>
Spain	100%
<mark>UK</mark>	<mark>O</mark>
USA	70% (100% tropical)

New QC tool at MeteoFrance

http://esurfmar.meteo.fr/qctools/statistics/statistics.php

	(6)
и	MELEO
н	PRANCE

BUOYS AND VOS QC - MONTHLY STATISTICS

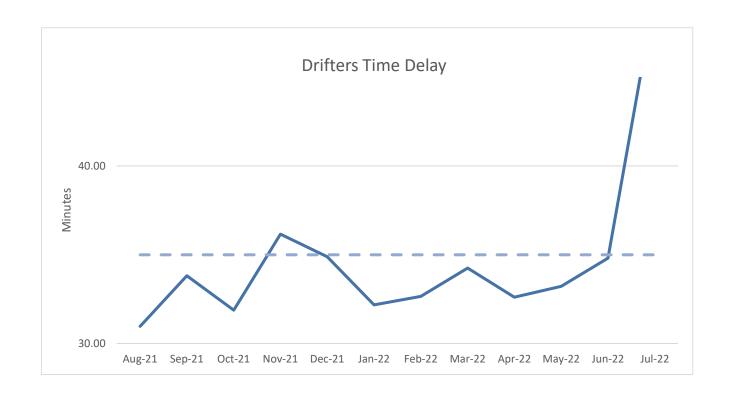
From these forms, you will have access to monthly statistical information of the data provided by databuoys and Voluntary Observing Ships sending messages on the GTS. You can access the statistical indicators through several options:

- By unique Identifier, which will show you either last 2 years of data if you choose the "Table" option, or the graphic representation corresponding to some of these statistical indicators if "Graphs" is chosen for display,
- 2. By country, where you will have acces for a given month to all the buoys or ships for that country

Please note that the country and station informations are based on updated metadata files from OceanOPS.

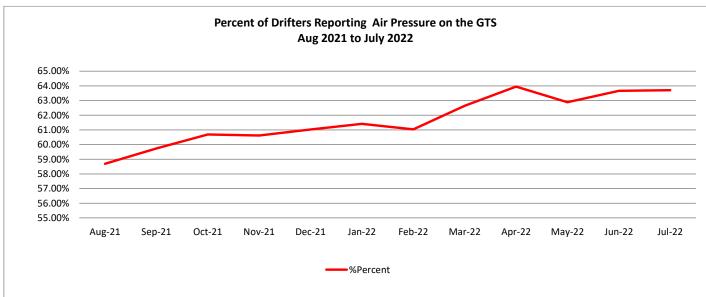
If values of indicators exceed warning thresholds, they appear in red in the tables.

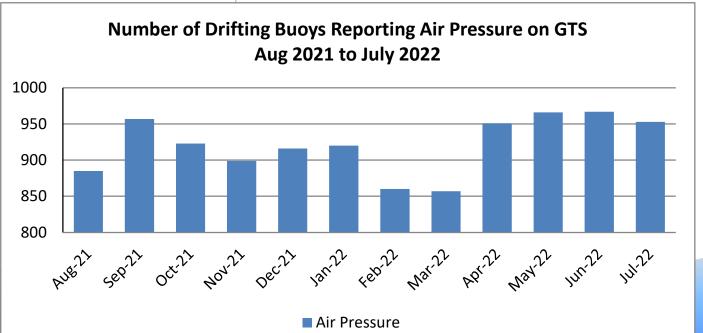
In the graphs, the red lines indicate the threshold value for the displayed statistical indicator if defined. Below are displayed the thresholds values used:

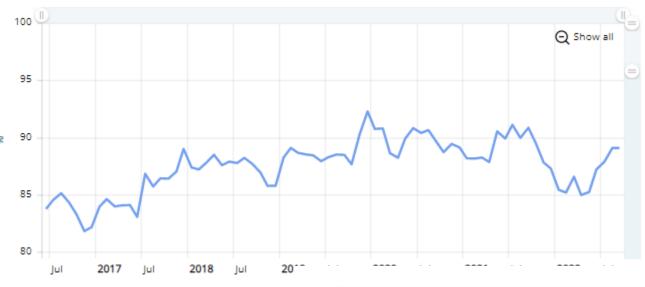

Parameters Bias		Standard Deviation	RMS	Gross Errors Obs-Model ≥ 10 hPa		
Pressure	sure Bias > 1.2 hPa SD > 1.5 hPa		1			
Temperature	Bias > 3 °C	1	RMS > 6 °C Obs-Model ≥ 15 °C			
Humidity	Bias > 7 %	SD > 10 %	RMS > 10 %	Obs-Model ≥ 40 % (*)		
Wind Speed	Bias > 4 m/s	1	/ Obs-Model≥ 15 m/s			
Wind Direction	Bias > 25 deg	SD > 60 deg	/ Obs-Model≥ 100 de			
SST	Bias >3°C	SD > 3 °C	RMS > 1.5 °C	Obs-Model ≥5°C		

The value for the number of Gross Errors (GE) threshold is 5.

(*): Before September 2021, the threshold for Humidity Gross errors was 15 %




Drifters Timeliness


Barometric Pressure

Wave Data

Buoy lifetime and Environmental Stewardship

- Overall
 - Average 687 days
 - Median 584 days

- One case
 - Longest 901 days
 - Median 384 days
- >50% beached
- ~6% recovered

Task Teams

ToRs, meetings with DBCP chair

TT-DM
(comparisons,
GDACs report, new
data stream)

TT-MB (OceanOPS template, GTMA issues)

TT-WM (workshop, metadata GDAC?)

TT-CB (Medi-1, wave drifters, participants)

TT-ES (survey, SeaWeek)

TT-DBPD (OBPs)

TT-User (TC studies, RRR, GOOS Co-design)

Groups

- GDP
- IABP/IPAB
- IBPIO
- ITP
- ESURFMAR
- Vandalism

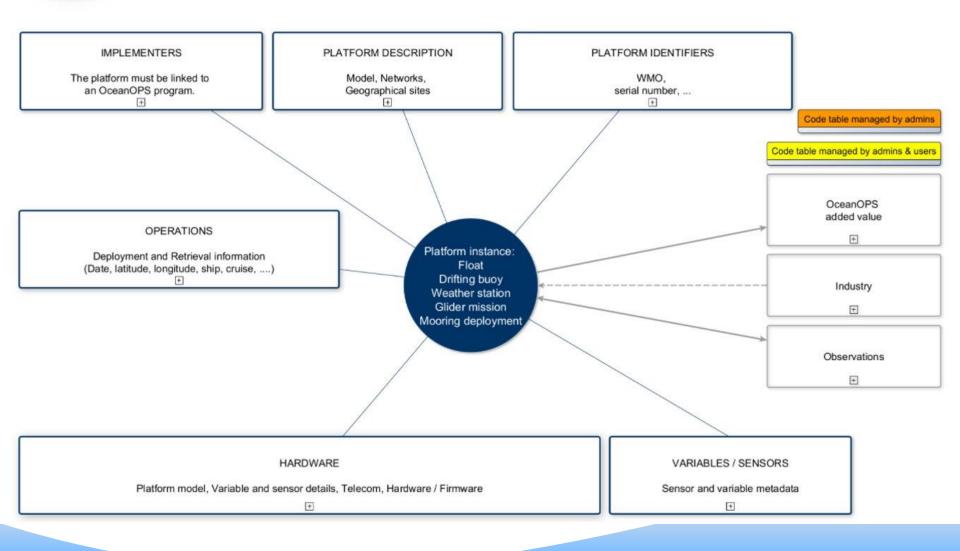
OceanOPS

- OceanOPS report card 2022
- Data mapping (17th Nov)
- Metadata structure and templates
- WSI allocation API
- Odyssey project
- GBON—RRR—Co-design
- EEZs
- TRUSTED, EuroSea

OceanOPS report card 2022

GOOS in situ networks 1	Implementation STATUS ²	REAL TIME ²	ARCHIVED DELAYED MODE'	META-DATA ¹	Best practices*	OPERATIONAL SERVICES	CLIMATE	OCEAN HEALTI
Ship based meteorological - SOT	***	***	***	***	***			
Ship based oceanographic - SOT	***	***	***	H H:it	***	€ A₹		
Repeated transects - CO-SHIP	***	Not applicable	***	#ritrit	***			1
Sea level gauges - GLOSS	***	***	***	* ***	***	Æ ₹	(1)	
Time series sites - OceanSITES	***	Not applicable	***	***	**:			1
Moored buoys - DBCP	***	***	***	***	***	Æ ₹		1
Tsunami buoys - DBCP	***	***	***	s krikrik	***	∠ A₹		
HF radars	★1 ★ Emerging	***	s totok	★ ☆☆	***	€ A₹		
Drifting buoys - DBCP	***	***	***	未补水	***	∠ A₹		
Profiling floats - Argo	***	***	***	***	***	Æ ₹		
Deep & biogeochemistry floats - Argo	★ Emerging	***	***	***	***			1
OceanGliders	f Emerging	***	★ 水水	***	***	AF		1
Animal borne sensors - AniBOS	∮ Emerging	* **	***	北 市市	***	€ A₹		1/2

(I) More information at www.goosceaen.org (2) Status: status of the implementation compared to the community widely adopted targets when it exists, network self-assessed status when target doesn't exist. (3) Real time, data freely available, without any restriction, on Global Telecommunication System of WMO and internet (4) Archived delayed mode, data of the highest quality available for scientific analysis (e.g., climate studies). (5) Metadata: information required by OceanOPS (6) Best Practices: community reviewed and easily accessible documentation encompassing the observations lifecycle (7) See https://www.gooscocean.org Observations > Network Specification Sheets www.gooscocean.org Observations > Network Specification Sheets. More information on networks status & indicators definition at organization occurrences organizations.



Data and metadata mapping

- OCG data management
 - Roundtable 17 Nov
- Metadata structure and templates
 - https://www.ocean-ops.org/metadata
- WSI automation and API
 - https://www.ocean-ops.org/api/1/help/#aboutthe-api

Odyssey Project

• Ocean Summit, Brest, France

GBON/RRR/Co-design

- Primary consideration
 - NWP and climate
- Possible networks (TBC)
 - DBCP, VOS, Argo
- Possible variables (TBC)
 - Drifters: SST, AP
 - Moorings: surface met + upper ocean Temp, S
 - VOS: Surface met v.
 - Argo: upper ocean Temp, S

Ad hoc

TRUSTED FRM HRSST

- Tailored metadata management (Mathieu's presentation)
- Project overview and buoy analysis (Anne's and Marc's presentations)

EUROSEA

- Tide gauges/GLOSS
- HFRadars
- Eulorian stations

Proposed Actions and Recommendations

- Metadata integration with OceanOPS
- Regular monitoring and communication with counterparts
- Indian Ocean, South Atlantic
- Data value and impact, success stories
- Knowledge and information management (websites and NRT with OceanOPS...)
- Connections with GBON
- New data contributors (incl. upgrades barometer, wave sensors)

Thank you!

Questions?