### Tsunami Generated by Volcanoes ad Hoc Team Report

#### PTWS SC March 6-8 2023

#### Team :

Chair François Schindelé (France); Laura Kong (US, ITIC); Emily Lane (New-Zealand); Raphaël Paris (France); Maurizio Ripepe (Italy); Vasily Titov (US)

Secretariat : Rick Bailey (Unesco-IOC)

## **TGV** activities

• MEETINGS

The TGV team met 6 times by video-conference, from April 2022 to February 2023.

• SURVEY :

The TGV team at his first meeting identified that to get as much information as possible related to the volcano observatories activities on tsunami monitoring and warning systems, on volcanic tsunami hazard assessment. The TGV ad hoc team decided to perform a survey.

QUESTIONNAIRES
 A specific questionnaire would be prepared sent to a set of Volcano observatories and institutes in charge of volcano monitoring with identified contact people.

#### • VOLCANO OBSERVATORIES

Establishment of a list of Volcano observatories located close to sea or oceans with identified contact to send the questionnaire.

# **TGV Report**

- 0 Introduction and background
- 1 Tsunami generated by volcanic activity
- 2 Numerical modeling of volcanic tsunamis
- 3 Volcanic tsunami hazard assessment (Stromboli)
- 4 Volcano monitoring requirements for tsunami warning (Stromboli)
- 5 Volcanic tsunami warning systems and SOPs (Stromboli, Anak Krakatau)
- 6 Recommendations
- Appendix 1 questionnaire and summary results/responses?
- Appendix 2 : list of tsunamigenic volcanoes

#### Chapter 1 – Tsunamis generated by volcano activity and instability

-> background information on the physical phenomena associated with each identified possible tsunami source in a volcanic setting

-> references on historical and recent case-studies.



Table 1 – Examples of tsunami generated by volcano flank instability.

| Volcano       | Location   | Year | Landslide<br>volume                  | Max tsunami runup<br>(dist. from source) | Reference                                                        |
|---------------|------------|------|--------------------------------------|------------------------------------------|------------------------------------------------------------------|
| Anak          | Sunda      | 2018 | 210×10 <sup>6</sup> m <sup>3</sup>   | 85 m (4 km)                              | Muhari et al. (2019), Walter et al.                              |
| Krakatau      | Strait,    |      |                                      |                                          | (2019), Borrero et al. (2020),                                   |
|               | Indonesia  |      |                                      |                                          | Perttu et al. (2020), Putra et al.<br>(2020), Hunt et al. (2021) |
| Stromboli     | Aeolian    | 2002 | 17×10 <sup>6</sup> m <sup>3</sup>    | 11 m (1.5 km)                            | Bonaccorso et al. (2003), Maramai                                |
|               | Islands,   |      | and 5×10 <sup>6</sup> m <sup>3</sup> |                                          | et al. (2005)                                                    |
|               | Italy      |      |                                      |                                          |                                                                  |
| Kilauea       | Hawaï, USA | 1994 | ~10 <sup>5</sup> m³                  | 15 m (50 m)                              | Mattox and Mangan (1997)                                         |
| lliwerung     | Lembata,   | 1979 | 50×10 <sup>6</sup> m <sup>3</sup>    | 9 m (18 km)                              | Lassa (2009), Yudhicara et al.                                   |
|               | Indonesia  |      |                                      |                                          | (2015)                                                           |
| Ritter Island | Papua New  | 1888 | 5 km³                                | 15 m (9 km)                              | Johnson (1987), Ward and Day                                     |
|               | Guinea     |      |                                      |                                          | (2003), Kartens et al. (2019)                                    |
| Unzen-        | Kyushu,    | 1792 | 340×10 <sup>6</sup> m³               | 57 m (7 km)                              | Tsuji and Hino (1993), Inoue                                     |
| Mayuyama      | Japan      |      |                                      |                                          | (2000)                                                           |
| Oshima-       | Japan Sea, | 1741 | 2.4 km³                              | 13 m (50 km)                             | Satake & Kato (2001), Satake                                     |
| Oshima        | Japan      |      |                                      |                                          | (2007)                                                           |

Nb – similar tables are provided for pyroclastic flows, underwater explosions, and atmospheric forcing (HTHH-type).

Table 6 – Types of potentially tsunamigenic volcanoes and associated source mechanisms of tsunamis (updated from Paris et al., 2014a).

|      |                             | Volcano type                      |                            |                          |                           |  |  |  |
|------|-----------------------------|-----------------------------------|----------------------------|--------------------------|---------------------------|--|--|--|
|      |                             | Coastal / island<br>stratovolcano | Submarine<br>stratovolcano | Shallow-water<br>caldera | Oceanic shield<br>volcano |  |  |  |
|      | Subaerial landslide         |                                   |                            |                          |                           |  |  |  |
| e    | Submarine landslide         |                                   |                            |                          |                           |  |  |  |
| nrc  | Underwater explosion        |                                   |                            |                          |                           |  |  |  |
| i so | Caldera collapse            |                                   |                            |                          |                           |  |  |  |
| am   | Column collapse             |                                   |                            |                          |                           |  |  |  |
| un   | Pyroclastic flow            |                                   |                            |                          |                           |  |  |  |
| Ĕ    | Volcano-tectonic earthquake |                                   |                            |                          |                           |  |  |  |
|      | Atmospheric forcing         |                                   |                            |                          |                           |  |  |  |
| S    |                             | Stromboli, Italy                  | HTHH, Tonga                | Taal, Philippines        | Kilauea, Hawaii           |  |  |  |
| ple  |                             | Soufriere Hills,                  | Kick'em Jenny,             | Rabaul, Papua            | Fournaise,                |  |  |  |
| Ē    |                             | Montserrat                        | Grenada                    | New Guinea               | Reunion Island            |  |  |  |
| Exa  |                             | Unzen, Japan                      | Kolumbo,                   | Krakatau,                | Fogo, Cape Verde          |  |  |  |
| _    |                             |                                   | Greece                     | Indonesia                |                           |  |  |  |

#### Conclusion

The great majority of volcanic eruptions do not generate tsunami, but a single eruption might combine different sources of tsunamis (Table 6). Thus, the source of a tsunami observed during an eruption is often difficult to characterize. All source mechanisms listed here have different characteristics in terms of location, duration, volume, mass flux, and energy, which have consequences on the waves generated. Landslides are the most frequent sources of volcanic tsunamis. From all points of view, volcanic islands (arcs) are the most exposed to volcanic tsunamis.

#### List of 89 potentially tsunamigenic volcanoes established upon precise criteria.

1. Volcano was active during the XXth or XXIst centuries.

2. It belongs to one of the following types of volcanoes:

A- It is a steep-flanked stratovolcano whose main eruptive centre is located less than 7 km from the coast (sea or lake). Typical examples: Stromboli, Soufrière Hills.

B- The volcano belongs to a complex of eruptive centres in a partly submerged caldera. A distinction can be made between caldera lakes (e.g. Taal, Philippines), calderas opened to the sea (e.g. Rabaul, PNG) and submerged calderas with emerged eruptive centres (e.g. Krakatau, Indonesia).

C- It is a submarine volcano with shallow-water vents, whose activity and flank instability are clearly potential sources of tsunamis, as demonstrated by the HTHH eruption in 2022.

D- It is a shield volcano (ocean island) showing evidence of flank deformation, such as Kilauea volcano in Hawaii, and Piton de la Fournaise in Reunion Island.

3. Additional volcanoes were added to the list, based on suggestions found in the questionnaires sent to volcano observatories.

| NAME                  | COUNTRY     | REGION             | SUBREGION/ISLAND | BASIN         | LONG, LAT (WGS84)    | VOLCANO TYPE | DISTANCE / COAST (km) | LAST ERUPTION Ap | HISTORICAL TSUNAMI                                |                |    |
|-----------------------|-------------|--------------------|------------------|---------------|----------------------|--------------|-----------------------|------------------|---------------------------------------------------|----------------|----|
| Mount Pelee           | FRANCE      | WEST INDIES        | MARTINIQUE       | CARIBBEAN     | -61.16488,14.80937   | A            | 5.6                   | 1932             | 1902                                              |                |    |
| Soufriere             | FRANCE      | WEST INDIES        | GUADELOUPE       | CARIBBEAN     | -61.66339,16.04370   | A            | 8.7                   | 1976             |                                                   |                |    |
| Fani Maore            | FRANCE      | COMORES            | MAYOTTE          | INDIAN        | 45.62150,-13.17750   | С            | 0                     | 2022             |                                                   |                |    |
| Piton de la Fournaise | FRANCE      | REUNION ISLAND     | REUNION          | INDIAN        | 55.70796,-21.24286   | D            | 9                     | 2021             |                                                   |                |    |
| Kolumbo               | GREECE      | AEGEAN SEA         | NE SANTORINI     | MEDITERRANEAN | 25.48477,36.52648    | С            | 0                     | 1650             | 1650                                              |                |    |
| Santorini             | GREECE      | AEGEAN SEA         | SANTORINI        | MEDITERRANEAN | 25.39596,36.40419    | В            | 0.8                   | 1950             |                                                   |                |    |
| Kick em Jenny         | GRENADA     | WEST INDIES        | NW GRENADA       | CARIBBEAN     | -61.64121,12.29980   | С            | 0                     | 2017             | 1939, 1965?                                       |                |    |
| Katla                 | ICELAND     | ICELAND            |                  | NE ATLANTIC   | -19.05228,63.62868   | A            | 23.4                  | 1918             | 1918                                              |                |    |
| Vestmannnaeyjar       | ICELAND     | ICELAND            | VESTMANN ISLANDS | NE ATLANTIC   | -20.2646,63.4165     | С            | 0                     | 1973             |                                                   |                |    |
| Snaefellsjokull       | ICELAND     | ICELAND            |                  | NE ATLANTIC   | -23.77128,64.80388   | A            | 7.8                   |                  |                                                   |                |    |
| Barren Island         | INDIA       | ANDAMA ISLANDS     | BARREN ISLAND    | INDIAN        | 93.86073,12.27905    | A            | 1.5                   | 2020             |                                                   |                |    |
| Anak Krakatau         | INDONESIA   | JAVA-SUMATRA       | SUNDA STRAIT     | INDIAN        | 105.42572,-6.10129   | В            | 0.5                   | 2022             | 1883, 1928, 1930, 1981, 2018                      |                |    |
| Banda Api             | INDONESIA   | BANDA SEA          | BANDA            | PACIFIC       | 129.88246,-4.52215   | A            | 1.5                   | 1988             |                                                   |                |    |
| Teon                  | INDONESIA   | BANDA SEA          | EAST BEBAR       | PACIFIC       | 129.14375,-6.97622   | A            | 1.5                   | 1904             |                                                   |                |    |
| Batu Tara             | INDONESIA   | FLORES SEA         | KOMBA            | PACIFIC       | 123.58594,-7.78829   | A            | 1                     | 2022             |                                                   |                |    |
| Rokatenda             | INDONESIA   | FLORES SEA         | PALUWEH          | PACIFIC       | 121.70869,-8.32135   | A            | 2.3                   | 2013             | 1928                                              |                |    |
| Sangeang Api          | INDONESIA   | FLORES SEA         | SANGEANG         | PACIFIC       | 119.07065,-8.19806   | A            | 5.2                   | 2022             |                                                   |                |    |
| Gamalama              | INDONESIA   | MALUKU             | GAMALAMA         | PACIFIC       | 127.33344,0.80993    | A            | 4.3                   | 2018             |                                                   |                |    |
| Gamkonora             | INDONESIA   | MALUKU             | HALMAHERA        | PACIFIC       | 127.52982,1.37824    | A            | 4.8                   | 2007             | 1673?                                             |                |    |
| Iliwerung             | INDONESIA   | NUSA TENGGARA EAST | LEMBATA          | PACIFIC       | 123.57291,-8.53105   | A            | 1.5                   | 2021             | 1973, 1979, 1983                                  |                |    |
| Lewotolo              | INDONESIA   | NUSA TENGGARA EAST | LEMBATA          | PACIFIC       | 123.50796,-8.27324   | A            | 4                     | 2012             |                                                   |                |    |
| Awu                   | INDONESIA   | SULAWESI           | SANGIHE          | PACIFIC       | 125.4496,3.6901      | Α            | 5.5                   | 2004             | 1856, 1892                                        |                |    |
| Karangetang           | INDONESIA   | SULAWESI           | SIAU             | PACIFIC       | 125.40605,2.78095    | Α            | 4                     | 2020             |                                                   |                |    |
| Ruang                 | INDONESIA   | SULAWESI           | RUANG            | PACIFIC       | 125.36997,2.30081    | Α            | 1.6                   | 2002             | 1871                                              |                |    |
| Stromboli             | ITALY       | AEOLIAN ISLANDS    | STROMBOLI        | MEDITERRANEAN | 15.2120,38.7939      | Α            | 1.6                   | 2022             | 1343, 1879, 1916, 1919, 1930, 1944, 1954, 2002, 2 | 019, 2021, 202 | 22 |
| Vulcano               | ITALY       | AEOLIAN ISLANDS    | VULCANO          | MEDITERRANEAN | 14.96104,38.40333    | В            | 0.9                   | 1890             | 1988                                              |                |    |
| Campi Flegrei         | ITALY       | CAMPANIA           |                  | MEDITERRANEAN | 14.13877,40.82674    | В            | 0                     | 1538             |                                                   |                |    |
| Vesuvius              | ITALY       | CAMPANIA           |                  | MEDITERRANEAN | 14.42678,40.82131    | Α            | 6.4                   | 1944             | 1631                                              |                |    |
| Etna                  | ITALY       | SICILIA            |                  | MEDITERRANEAN | 15.00195,37.73129    | Α            | 17                    | 2023             | 1329                                              |                |    |
| Fukutoku-Okanoba      | JAPAN       | IZU ISLANDS        | N MINAMIIWO      | PACIFIC       | 141.48436,24.27931   | С            | 0                     | 2021             | 2021                                              |                |    |
| Miyake-jima           | JAPAN       | IZU ISLANDS        | MIYAKE           | PACIFIC       | 139.52650,34.08570   | Α            | 3                     | 2010             |                                                   |                |    |
| Myojinsho             | JAPAN       | IZU ISLANDS        |                  | PACIFIC       | 139.918002,31.888013 | С            | 0                     | 1970             | 1953                                              |                |    |
| Nishino-jima          | JAPAN       | IZU ISLANDS        |                  | PACIFIC       | 140.87387,27.24725   | В            | 0.2                   | 2021             |                                                   |                |    |
| Sumisu                | JAPAN       | IZU ISLANDS        |                  | PACIFIC       | 140.05,31.486        | С            | 0                     | 1916             | 1984, 1996, 2006, 2015, 2018                      |                |    |
| Tori-jima             | JAPAN       | IZU ISLANDS        | TORI             | PACIFIC       | 140.30291,30.48421   | Α            | 1.1                   | 2002             |                                                   |                |    |
| Oshima-Oshima         | JAPAN       | JAPAN SEA          | OSHIMA           | PACIFIC       | 139.36710,41.51003   | Α            | 1                     | 1790             | 1741                                              |                |    |
| Kikai                 | JAPAN       | RYUKYU ISLANDS     | IWO-JIMA         | PACIFIC       | 130.30526,30.79310   | В            | 1                     | 2020             |                                                   |                |    |
| Suwanose-jima         | JAPAN       | RYUKYU ISLANDS     | SUWANOSE         | PACIFIC       | 129.71366,29.63857   | Α            | 2.2                   | 2020             |                                                   |                |    |
| Soufriere Hills       | MONTSERRAT  | WEST INDIES        | MONTSERRAT       | CARIBBEAN     | -62.17969,16.72027   | Α            | 3.2                   | 2013             | 1997, 1999, 2003, 2006                            |                |    |
| Saba                  | NETHERLANDS | WEST INDIES        | SABA             | CARIBBEAN     | -63.23923,17.63598   | Α            | 1.3                   | 1640             |                                                   |                |    |
| The Quill             | NETHERLANDS | WEST INDIES        | ST EUSTATIUS     | CARIBBEAN     | -62.96368,17.47764   | A            | 1.2                   |                  |                                                   |                |    |
| White Island          | NEW ZEALAND | BAY OF PLENTY      | WHITE ISLAND     | PACIFIC       | 177.18057,-37.51937  | A            | 0.8                   | 2019             |                                                   |                |    |
| Raoul Island          | NEW ZEALAND | KERMADEC           | RAOUL ISLAND     | PACIFIC       | -177.91931,-29.26417 | A            | 1.6                   | 2006             |                                                   |                |    |
| Okataina              | NEW ZEALAND | NORTH ISLAND       |                  | PACIFIC       | 176.50012,-38.12027  | В            | 0                     | 1981             |                                                   |                |    |

| NAME                  | COUNTRY            | REGION           | SUBREGION/ISLAND | BASIN     | LONG, LAT (WGS84)    | VOLCANO TYPE | DISTANCE / COAST (km) | LAST ERUPTION Ap | HISTORICAL TSUNAMI           |  |  |
|-----------------------|--------------------|------------------|------------------|-----------|----------------------|--------------|-----------------------|------------------|------------------------------|--|--|
| Taupo                 | NEW ZEALAND        | NORTH ISLAND     |                  | PACIFIC   | 175.91988,-38.80097  | В            | 0                     | 260              |                              |  |  |
| Momotombo             | NICARAGUA          | LAKE MANAGUA     |                  | PACIFIC   | -86.53808,12.42113   | Α            | 3.5                   | 2016             |                              |  |  |
| Cosiguina             | NICARAGUA          | PACIFIC COAST    |                  | PACIFIC   | -87.57093,12.98246   | Α            | 6.1                   | 1859             | 1835?                        |  |  |
| Bam                   | PAPUA - NEW GUINEA | BISMARCK SEA     | BAM              | PACIFIC   | 144.81801,-3.61275   | Α            | 1.1                   | 1960             |                              |  |  |
| Kadovar               | PAPUA - NEW GUINEA | BISMARCK SEA     | KADOVAR          | PACIFIC   | 144.58806,-3.60754   | Α            | 0.5                   | 2020             | 2018                         |  |  |
| Long Island           | PAPUA - NEW GUINEA | BISMARCK SEA     | LONG ISLAND      | PACIFIC   | 147.11783,-5.35215   | Α            | 7                     | 1993             |                              |  |  |
| Manam                 | PAPUA - NEW GUINEA | BISMARCK SEA     | MANAM            | PACIFIC   | 145.03743,-4.07896   | Α            | 5                     | 2020             |                              |  |  |
| Ritter Island         | PAPUA - NEW GUINEA | BISMARCK SEA     | RITTER ISLAND    | PACIFIC   | 148.11472,-5.51957   | С            | 0                     | 2007             | 1888, 1972, 1974, 2007       |  |  |
| Dakataua              | PAPUA - NEW GUINEA | NEW BRITAIN      |                  | PACIFIC   | 150.10607,-5.05447   | В            | 5.5                   | 1895             |                              |  |  |
| Rabaul                | PAPUA - NEW GUINEA | NEW BRITAIN      |                  | PACIFIC   | 152.20300,-4.27081   | В            | 0.6                   | 2014             | 1878, 1937, 1994             |  |  |
| Tuluman               | PAPUA - NEW GUINEA | NEW BRITAIN      | SOUTH MANUS      | PACIFIC   | 147.30293,-2.45519   | С            | 0                     | 1957             |                              |  |  |
| Ulawun                | PAPUA - NEW GUINEA | NEW BRITAIN      |                  | PACIFIC   | 151.32889,-5.05038   | Α            | 10.5                  | 2022             |                              |  |  |
| Didicas               | PHILIPPINES        | BABUYAN ISLANDS  | NE CAMIGUIN      | PACIFIC   | 122.20254,19.07709   | В            | 0.2                   | 1978             | 1969?                        |  |  |
| Camiguin              | PHILIPPINES        | BOHOL SEA        | CAMIGUIN         | PACIFIC   | 124.7201,9.1754      | В            | 4                     | 1953             | 1871                         |  |  |
| Taal                  | PHILIPPINES        | LUZON            |                  | PACIFIC   | 120.9930,14.0070     | В            | 2.2                   | 2021             | 1716, 1749, 1754, 1911, 1965 |  |  |
| Sao Jorge             | PORTUGAL           | AZORES ISLANDS   | SAO JORGE        | ATLANTIC  | -28.07764,38.65153   | D            | 1.5                   | 1902             |                              |  |  |
| Raikoke               | RUSSIA             | KURIL ISLANDS    | RAIKOKE          | PACIFIC   | 153.24978,48.29220   | Α            | 0.7                   | 2019             |                              |  |  |
| Sarychev              | RUSSIA             | KURIL ISLANDS    | SARYCHEV         | PACIFIC   | 153.20003,48.09158   | Α            | 2.8                   | 2021             |                              |  |  |
| Tinakula              | SOLOMON ISLANDS    | EAST SOLOMON     | TINAKULA         | PACIFIC   | 165.80392,-10.38640  | Α            | 1.1                   | 2020             | 1897, 1966                   |  |  |
| Kavachi               | SOLOMON ISLANDS    | WEST SOLOMON     | SOUTH VANGUNU    | PACIFIC   | 157.97888,-8.99099   | С            | 0                     | 2021             | 1951                         |  |  |
| Savo                  | SOLOMON ISLANDS    | WEST SOLOMON     | NORTH GUADALCANA | I PACIFIC | 159.80749,-9.13400   | Α            | 2.3                   | 1847?            |                              |  |  |
| Cumbre Vieja          | SPAIN              | CANARY ISLANDS   | LA PALMA         | ATLANTIC  | -17.83715,28.56832   | D            | 1.2                   | 2021             |                              |  |  |
| Liamuiga              | ST KITTS & NEVIS   | WEST INDIES      | ST KITTS         | CARIBBEAN | -62.80896,17.37007   | Α            | 4.4                   | 1843?            |                              |  |  |
| Soufriere             | ST VINCENT         | WEST INDIES      | ST VINCENT       | CARIBBEAN | -61.18092,13.33104   | Α            | 3.5                   | 2020             | 1902, 2020                   |  |  |
| Home Reef             | TONGA              | TONGA            | WEST NEIAFU      | PACIFIC   | -174.77517,-18.99183 | С            | 0                     | 2006             |                              |  |  |
| Hunga Ha apai         | TONGA              | TONGA            | NORTH TONGATAPU  | PACIFIC   | -175.39068,-20.54491 | В            | 0.1                   | 2022             | 2015, 2021, 2022             |  |  |
| Lateiki - Metis Shoal | TONGA              | TONGA            | WEST NEIAFU      | PACIFIC   | -174.86999,-19.18002 | С            | 0                     | 2019             |                              |  |  |
| Tofua                 | TONGA              | TONGA            | TOFUA            | PACIFIC   | -175.07002,-19.75023 | Α            | 3                     | 2014             | 1892                         |  |  |
| Unnamed               | TONGA              | TONGA            | WEST TONGATAPU   | PACIFIC   | -175.55041,-20.85174 | С            | 0                     | 2017             |                              |  |  |
| Augustine             | USA                | ALASKA           | AUGUSTINE        | PACIFIC   | -153.43023,59.36302  | Α            | 4                     | 2006             | 1883                         |  |  |
| Bogoslof              | USA                | ALEUTIAN ISLANDS | BOGOSLOF         | PACIFIC   | -168.03530,53.93010  | Α            | 0.2                   | 2017             |                              |  |  |
| Kasatochi             | USA                | ALEUTIAN ISLANDS | KASATOCHI        | PACIFIC   | -175.50881,52.17454  | Α            | 0.4                   | 2008             | 2008                         |  |  |
| Mono Lake             | USA                | CALIFORNIA       |                  | PACIFIC   | -119.02835,38.00242  | В            | 0.6                   | 1790             |                              |  |  |
| Kilauea               | USA                | HAWAII           | BIG ISLAND       | PACIFIC   | -155.2889,19.4202    | D            | 14                    | 2022             | 1975                         |  |  |
| Loihi                 | USA                | HAWAII           | SOUTH BIG ISLAND | PACIFIC   | -155.2681,18.9262    | D            | 0                     | 1996             |                              |  |  |
| Anatahan              | USA                | MARIANA ISLANDS  | ANATAHAN         | PACIFIC   | 145.67389,16.35038   | Α            | 1.5                   | 2008             |                              |  |  |
| NW-Rota 1             | USA                | MARIANA ISLANDS  | WEST SINAPALU    | PACIFIC   | 144.77496,14.60064   | С            | 0                     | 2010             |                              |  |  |
| Ruby                  | USA                | MARIANA ISLANDS  | NORTH SAIPAN     | PACIFIC   | 145.56974,15.61975   | С            | 0                     | 1995             |                              |  |  |
| South Sarigan         | USA                | MARIANA ISLANDS  | SARIGAN          | PACIFIC   | 145.77989,16.57998   | С            | 0                     | 2010             | 2010                         |  |  |
| Edgecumbe             | USA                | ALASKA           | EASTERN ALASKA   | PACIFIC   | -135.75289,57.05220  | Α            | 5.1                   | 2080 BCE         |                              |  |  |
| East Epi              | VANUATU            | VANUATU          | EAST EPI         | PACIFIC   | 168.37002,-16.68009  | С            | 0                     | 2023             |                              |  |  |
| Eastern Gemini        | VANUATU            | VANUATU          | SOUTH ANATOM     | PACIFIC   | 170.28844,-20.98807  | С            | 0                     | 1996             |                              |  |  |
| Kuwae                 | VANUATU            | VANUATU          | SOUTH EPI        | PACIFIC   | 168.53500,-16.83028  | С            | 0                     | 1974             |                              |  |  |
| Lopevi                | VANUATU            | VANUATU          | SE AMBRYM        | PACIFIC   | 168.34504,-16.50700  | Α            | 2.2                   | 2007             |                              |  |  |

#### List of potentially tsunamigenic volcanoes -> GIS database



| Table_tsunamigenic_volcanoes-V2 |                 |
|---------------------------------|-----------------|
| ▼ NAME                          | Stromboli       |
| <ul> <li>(Dérivé)</li> </ul>    |                 |
| ♦ (Actions)                     |                 |
| NAME                            | Stromboli       |
| COUNTRY                         | ITALY           |
| REGION                          | AEOLIAN ISLANDS |
| SUBREGION/ISLAND                | STROMBOLI       |
| BASIN                           | MEDITERRANEAN   |
| LONG                            | 15,212          |
| LAT (WGS84)                     | 38,7939         |
| VOLCANO TYPE                    | А               |
| DISTANCE / COAST (km)           | 1,6             |
| LAST ERUPTION April 2022 update | 2022            |
|                                 | 1343            |
|                                 | 1879            |
|                                 | 1916            |
|                                 | 1919            |
|                                 | 1930            |
|                                 | 1944            |
|                                 | 1954            |
|                                 | 2002            |
|                                 | 2019            |
|                                 | 2021            |
|                                 | 2022            |
|                                 |                 |



Next step to be completed soon: adding possible source (e.g. landslide, explosion) of tsunami for each volcano (from table 6).

#### **Chapter 2 – Numerical modeling of volcanic tsunamis**

- 1. General consideration of model applications for volcanic tsunamis
  - Complex sources (different fluids, fast processes, phase-shifts) = sophisticated models = high computational cost
  - Shorter wave length compared to earthquake-induced tsunamis -> faster attenuation -> local tsunamis
  - Short time to forecast -> real-time applications are thus challenging
  - How far can we go in the approximation in order to save time?

2. Tsunami generation and initialization modeling: *the most challenging phase* 

- Instantaneous initialization : tsunami happens rapidly compared to the shallow water wave speed E.g. underwater explosions, caldera collapse (not realistic)
- □ Finite time initialization : forcing happens over a specified time at the start of the modelling
  - Ground deformation : sea floor motion as a forcing term. E.g. submarine landslide, caldera collapse.
  - Multi-layer models : all fluids are modelled as separated layers + interactions. *E.g. subaerial landslides, pyroclastic flows*.
  - Ongoing forcing by a pressure anomaly, such as Lamb waves produced by *large explosions in the atmosphere*.
- 3. Tsunami propagation modeling

Most propagation models are suitable, but dispersive effects are important -> Boussinesq approximation often required.

#### 4. Tsunami inundation modeling

Similar to any long wave inundation, but distribution of wave runups is similar to landslide (local) tsunamis (except HTHH-type)

# 3 Volcanic tsunami hazard assessment



Position of the sliding planes of the 3 main collapses (from Tibaldi, 2001) of Vancori (in red), NeoStromboli (in blue) and Pizzo (in yellow).



. Observed and simulated tsunami wave heights (December 2002) and runups on Stromboli

### 4 Volcano monitoring requirements for tsunami warning

ILT [OHO] 0.5 µrac

18:00



Collapse of the eruptive plume and/or crater rim/dome generates pyroclastic flows and rock avalanches along the steep volcano slope (from Francis, 1993).



Before explosive eruptions, upward magma migration progressively inflates the ground. This inflation can be used to deliver a warning days or minutes before eruption. Inflation at Mt. St. Helens (upper panel) started several days before the 19 March 1982 eruption. At Stromboli (lower panel), ground inflation is smaller but follows a regular pattern which is used to automatically issue alerts 4-5 minutes before violent explosive events (Ripepe et al., 2021).

### 4 Volcano monitoring requirements for tsunami warning



(A) Global distribution of recording geophysical sensors
Background image is brightness temperature difference
(Himawari-8) at 07:10 UTC on 15 January 2022. Selected 4-hour
pressure waveforms are filtered from 10,000 to 100 s. Upperright inset shows Hunga wave paths around Earth. (B) Observed
barograms. (C) Observed ocean bottom pressure gauge
waveform (Matoza et al., 2022; Kubota et al., 2022).

### 4 Volcano monitoring requirements for tsunami warning

| Alert Level     | Meaning                   |
|-----------------|---------------------------|
| GREEN/NORMAL.   | Background                |
| YELLOW/ADVISORY | Above Background          |
| ORANGE/WATCH    | Escalation of Parameters  |
| RED/ALERT       | Eruption imminent/Ongoing |

. Color code representing the Volcano Alert levels (VAL) used by many Volcano Observatories to issue alerts, which could be integrated in the Tsunami Warning Systems to actuate prewarning procedures..

### 5 Volcanic Tsunami warning System : Stromboli (1/3)





Schematic technical illustration of the main components of the elastic beacon

Position of the two elastic beacons (PLB and PDC)

### 5 Volcanic Tsunami warning System : Stromboli (2/3)



*Chart flow of the automatic tsunami detection algorithm operating at Stromboli* 





Sequence of frames taken from the LBZ camera of the December 4, 2022, pyroclastic flow which moving downslope the Sciara del Fuoco

The tsunami generated by the impact of the pyroclastic density current occurred at Stromboli on December 4, 2022

### 5 Volcanic Tsunami warning System : Stromboli (3/3)



. Tsunami signage at Stromboli indicating a) the limit of the Tsunami Hazard zone, b) the direction of the safer "Escape route" and c) the direction to waiting areas (from Bonilauri et al., 2021).

### Volcano monitoring SOP for tsunami pre-alert

**Color code representing the Volcano Alert levels (VAL)** used by many Volcano Observatories to issue alerts.

Alert levels are usually defined by volcano observatories and represent the "official" communication of volcano status by scientists to civil protection authorities

| Alert Level     | Meaning                   |
|-----------------|---------------------------|
| GREEN/NORMAL.   | Background                |
| YELLOW/ADVISORY | Above Background          |
| ORANGE/WATCH    | Escalation of Parameters  |
| RED/ALERT       | Eruption imminent/Ongoing |

Following a similar strategy to that used by the ICAO for the ash dispersal in the atmosphere, the Volcano Tsunami Alert Notification (VOTAN) levels should indicate:

- a) two levels of pre-eruption volcanic activities ; a significant unusual and/or increasing volcanic activity (YELLOW) or a larger increasing activity (ORANGE) which could presage a volcanic eruption.
- b) ongoing volcanic eruption (RED); description of the eruption including whether flank instability or a large plume is occurring.
- c) volcanic eruption cessation (GREEN).

#### Such monitoring system don't provide any information about :

- Estimated day and arrival time of tsunami waves
- Tsunami Threat level

### Stromboli Operating Procedure – using sea level records



0.5 15:18:35 a) height (m) PLB 15:18 15:19 15:24 15:20 15:21 15:22 15:23 40 b) PDC STA/LTA PLB EW threshold 15:19:25 15:18 15:19 15:21 15:22 15:23 15:24 time (hh:mm)

*The Automatic Alert detection and tsunami generated by the impact of the pyroclastic density current occurred at Stromboli on December 4, 2022* 

Chart flow of the automatic tsunami detection algorithm operating at Stromboli

The Stromboli Automatic Alert System based on tsunami waves detection would automatically send an alert in about 20s after the onset of the waves that activates the sirens at Stromboli and other islands as the South Eastern coasts of Tyrrhenean sea.

## Non SOP Stromboli

- In case of a tsunami detection by the TEWS (Figure 19) the Department of Italian Civil Protection (DPC) has defined in cooperation with the Sicily Regional Civil Protection, the Lipari Municipality and the monitoring centers of INGV and University of Florence (LGS) national PROCEDURE for non-conventional tsunami. Given the short alert time (<4 minutes), the TEWS will send the alert before tsunami wave will be fully developed (generally within the first 20 s from the onset). this gives no time to run models to estimate the possible effects on the nearby coast. Therefore, in spite of the amplitude of the tsunami wave, once received the notification from the TEWS, the DPC will automatically activate for three minutes the acoustic alert (sirens) at Stromboli and Ginostra villages, Panarea and Lipari island, and in the control room of the Harbour Office of Milazzo (see Figure 15) with a continuous monotone sound. Besides, emails and SMS messages will be automatically sent to a list of previously selected Authorities with the following text: "Tsunami wave in progress at Stromboli".
- The early-warning message is thus automatically delivered to control room for the Emergency of i) the National Civil Protection, ii) the Sicily Regional Civil Protection, iii) the Lipary Municipality, and iv) the Prefecture of Messina. In coordination and cooperation with the National Department of Civil Protection the in-charge Authorities will keep the contact with i) the Mayor's delegates for the islands of Stromboli, Vulcano, Panarea, Alicudi, and Filicudi; ii) the municipalities along the Sicily and Calabria coast, iii) the operating structures present on the territory (e.g. Police, Firefighters, Forestry Corps, etc.) and iv) the voluntary structures of Civil Protection present on the different islands with the aim to inform people, apply the safety procedure at local level, and regulate the navigation and the docking of boats.
- Once the tsunami risk is declared over, the Lipari Municipality, with the support of the Regional Department of Civil Protection, will evaluate the opportunity to inform with a message the population of Stromboli, Ginostra, and Panarea by using the same acoustic alert system in "voice" mode. The Department of Civil Protection, will monitor the possible effects of the tsunami along the coasts, and in agreement with the Sicilian Region, it will evaluate the activation of the emergency national civil protection plan.

# SOP and NTWC

- The TEWS implemented at Stromboli is the first early warning system developed to automatically deliver an alert in case of a tsunami generated by volcanic activity (Lacanna & Ripepe, 2020).
- At the moment operating outside the standard procedure developed for earthquake-generated tsunami.
- On August 2022 the University of Florence (LGS) and the National Institute of Geophysics and Volcanology (INGV), in the framework of the operational monitoring activities for the National Department of Civil Protection (DPC), signed a Cooperation Agreement to integrate the TEWS of Stromboli within the activities the national Tsunami Alert Center (CAT) of the INGV.