

已星海洋环境动力学国家重点实验室 ITATE KEY LABORATORY OF SATELLITE OCEAN INVIRONMENT DYNAMICS

Integrated coastal observing and forecasting system lessons learnt from the China Coastal Regions

Yuntao Wang, Fei Chai Second Institute of Oceanography, China

Xiamen University, China

May 4, 2023

Resources and productivity of the ocean

Coastal and Marine Ecosystem Stressors

Climate Change

Non-Climate

- Global warming
- Precipitation & runoff
- Sea-level rise
- Storms & extreme events
- Ocean acidification

- Overfishing
- Eutrophication
- Loss of habitats
- Oil spill
- Land reclamation

Distribution of global primary production

Limiting factor for marine primary production

Subsurface

Low Chl-a

- Light
- Low nutrients

Enough light

None nutrients

Mixed layer(ML)

- **Bottom of ML**
- **Maximum Chl-a**

Deep-sea

- No light
- **Sufficient nutrients**
- **Beneath ML**
- Low Chl-a ٠

Important to observe at depths

Main environmental issues

- Water quality degradation due to sewage, urban runoff and agriculture
- Eutrophication and HABs
- Loss of wetlands due to sea reclamation
- Increasing ecological risks under rapid urbanization, marine economy development and climate change

Red tides in Xiamen Bay

Concentrations of PO₄-P in Xiamen Bay (Cai et al., 2016)

Marine Ecosystem Modeling and Forecasting System in China Seas and NW Pacific

> Supported by MoST 9/2016 – 8/2021

Prof. Fei CHAI Second Institute of Oceanography, China Xiamen University, China

Peng XIU (SCSIO), Feng ZHOU (SIO/MNR), Hao WEI (Tianjin U.), Shan GAO (NMEFC) Yuntao Wang (SIO/MNR)

Observing system

Numerical modeling

NOAA

2002-2018, 11 PIs from 7 organizations 2.9% of the amount of the global deployment **Float deployment**

95 operational floats in total (2019/02/13)

biogeochemical AIGG

Steering Committee

Ken Johnson Co-Chairman - USA Hervé ClaustreEmnCo-Chairman - FRANCEUSA

Emmanuel Boss USA

BRAZIL

Catheri FRANCE

Catherine SchmechtigArne KörtzingerFRANCEGERMANY

Thomas W. Trull

AUSTRALIA

Fei Chai

Tetsuichi Fujiki

JAPAN

CHINA

Giorgio Dall'Olmo UNITED KINGDOM Sandy Thomalla SOUTH AFRICA

Satya Prakash INDIA

Haily Wang CHINA

Katja Fennel CANADA

1000 BGC-Argo in next ten years

biogeochemical Argg

China BGC-Argo development

Aiming to build up and maintain an array with 15-20 BGC-Argo floats in NWP (9 active now)

China Ongoing Argo and Bio-Argo Activities and Plans

18 Bio-Argo for the Western Pacific 2018-2019

9 has been deployed during May-Sept. 2018

#	Туре	Variables								
		[O ₂]	[Chla]	FDOM	POC	$E_d(3\lambda)$	iPAR	[NO ₃]	pН	
2	Provor	\checkmark		\checkmark			\checkmark		\checkmark	
4	Provor	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
4	Provor		\checkmark	\checkmark	\checkmark					40°N
2	Provor	\checkmark								32°N 24°N
4	Navis- Trec	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	16°N 8°N

Two peaks of surface Chl-a Sep 30 & Oct 03

BGC-Argo Sections

Chai, Wang et al. 2021

Limited Effect of Sub-Tropical Typhoons on Phytoplankton Dynamics

Martin, 1990

Blueprint of "Argo 2020" Program

2500 Core Argo+1000 BGC Argo+1000 Deep Argo

Regional assets for observations

NASA U.S.A. Coastal Scanner 1978-1986

MODISSeaWiFSTerra (1999~)(1997-2009)Aqua (2002~)

Chlorophyll

Suspended sediment

Essential Components of Digital Twin Ocean

More observations and detailed modeling results

History of OceanObs meeting

History of OceanObs meeting

Next OceanObs meeting in China

1

The 1st Planning Committee Meeting of OceanObs'29

B

OCEAN

2029年世界海洋观测大会 (OceanObs 29)

Ongoing preparation activities

Global Ocean Summit 2021

Strengthen Partnerships on Ocean Observation and Research

September 13-16, 2021 Qingdao, China

青岛海洋科学与技术试点国家实验室 Pilot National Laboratory for Marine Science and Technology (Qingdao)

Upcoming OceanObs meeting

Observing system

Numerical modeling

NOAA

Major pattern of chlorophyll distribution

Basis of BGC model

Development of CoSiNE model

• Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE-11)

Chai, 2002

Regional Ocean Model System (ROMS)

- $1/12^{\circ} \sim 1/8^{\circ}$ (7-12km)
- Period 1: 1991-2017
- Period 2: 1958-2017

(Chai et al., 2002, 2003, 2007, 2009; Fujii and Chai, 2007; Liu and Chai, 2009; Xiu and Chai, 2011, Palacz et al., 2011, Xu et al., 2013, Xiu and Chai, 2013, 2014, Guo et al., 2014; 2015; Zhou et al., 2017; Liu et al, 2018)

HNLC region simulation

Development of CoSiNE model

• Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE-13)

Chai, 2002

Nitrogen fixation module development

ow Chl-a

High Chl-a

High Chl-a

Low Chl-a

Development of CoSiNE model

• Carbon, Silicate, Nitrogen Ecosystem Model (CoSiNE-31)

Flowchart from observations to modeling

Declining Oxygen and Hypoxia due to Coastal Eutrophication

Low and declining oxygen levels in the open ocean and coastal waters affect processes ranging from biogeochemistry to food security. The global map indicates coastal sites

Complex system in the Changjiang Estuary

Physical, River discharge, Phytoplankton blooms, Hypoxia, OA

Biogeochemical processes:

Nutrient loading/ratio, production, sinking, Respiration...

Physical processes: Mixing + Advection

Zhou and Chai, et al. (2017), Prog. Oceanogr.

Numerical Models

The current and SST for the northwestern Pacific Ocean and the Taiwan Strait

Lin, Yan, Jiang & Zhang 2016 OM

Dataset of model input

158°E³

98°E

118°E

138°E

8

43°N

33°N 23°N

13°N

43°N

33°N

23°N

43°N

33°N

23°N

118°E

138°E

3°N -98°E

158°E³

98°F

138°E

158°E

Oxygen

118°E

158°E³

118°E

138°E

Development of operational forecasting system in Chinese Seas

Model development in South China Sea

Daily forecasting productsNO3PO4SiO4

100°E 105°E

110°E

115°E

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

120°E

125°E

100°E

105°E

110°E 115°E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

120°E

125°E

100°E

-

105°E 110°E

115°E 120°E

0.04 0.08 0.12 0.16 0.2 0.24 0.28

125°E

100°E

105°E

110°E

115°E 120°E

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

125°E

CHL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

DO

220 230 240 250 260 270 280 290 300 310 320 330

100°E 105°E 110°E 115°E 120°E 125°E

Online forecasting system

Application: Indicator product ^a

Eutrophication index 2009 5 22

National Water Quality Report

Application: Altering system for ecosystem disaster

Application: Forecasting for harmful algal bloom

Application: Assessment for aquaculture Growth model

Aquaculture site

The United Nations Decade of Ocean Science for Sustainable Development (2021-2030)

2021 United Nations Decade of Ocean Science for Sustainable Development

Seven Societal Goals

- 1. A clean ocean where sources of pollution are identified and removed
- 2. A healthy and resilient ocean where marine ecosystems are mapped and protected
- 3. A predictable ocean where society has capacity to understand current & future ocean conditions
- 4. A safe ocean where people are protected from ocean hazards
- 5. A sustainably harvested ocean ensuring the provision of food supply
- 6. A transparent ocean with open access to data, information & technologies
- 7. An inspiring and engaging ocean where society understands and values the ocean

Observing system

Numerical modeling

Predict better

Knowing the ocean for now and future

A Sustainable Marine Ecosystem

Thank you!