

 di Boaretto Claudio srl

IDSL INITIALIZATION MANUAL
V1.0 - May 2023

A. Annunziato1, D.A. Galliano 2, E. Capelli 1, E. Sabbatino 3

1. Società Italiana Componenti Elettronici

2 – Joint Research Centre of the European Commission

3 – Piksel S.r.l.

 UNESCO Contract – EN- 4500484180

2

IDSL INITIALIZATION MANUAL
Table of Contents

1 Introduction .. 4

2 IDSL Initialization ... 6

2.1 Download a prepared image from JRC ... 6

2.2 Download a new image from scratch from the Raspberry site 6

2.2.1 Download and install .. 6

2.2.2 Integrated tool .. 7

2.2.3 Power up ... 10

2.2.4 Configure LAN for static IP... 10

2.2.5 Enable ssh ... 12

2.3 Installation of other needed software .. 13

2.3.1 Update the system ... 13

2.3.2 Enable time service (OPTIONAL STEP) ... 14

2.3.3 Install WiringPi ... 14

2.3.4 Install ftp and telnet services .. 14

2.3.5 sshpass ... 15

2.3.6 serial port support .. 15

2.3.7 MiniCom .. 16

2.3.8 Bluetooth ... 16

2.3.9 I2c support ... 16

2.3.10 ssl support ... 17

2.3.11 Turn off the SWAP space... 18

2.3.12 Assign hostname to the device .. 19

2.4 VPN installation .. 19

2.4.1 Create a userid in the LogMeIn Hamachi ... 19

3 Installation of IDSL specific software ... 23

3.1 C version or TAD .. 24

3.1.1 Using the precompiled version ... 24

3.1.2 Recompiling the source code ... 25

3.2 Python version or pyTAD .. 25

3.2.1 pyTAD download and install ... 25

3.2.2 configuration of the device ... 26

3.3 C# version or RIO ... 30

3

3.3.1 Runtime installation.. 30

3.3.2 RIO installation .. 30

3.3.3 RIO initialization ... 33

4 Other settings .. 40

4.1 SMS commands for RPI.. 40

4.2 Update crontab ... 41

5 Saving the prepared image .. 43

6 Webcam initialization ... 44

6.1 Download the image of the basic operating system of the Raspberry W 44

6.1.1 Download a prepared image from JRC .. 44

6.1.2 Download a new image from scratch from the Raspberry website 44

6.2 Copy the software and prepare it for the execution ... 47

6.3 Connect the RPI and the ZERO W .. 47

6.4 Install the VPN .. 48

7 First switch on of an IDSL .. 49

7.1 Check the config file .. 49

7.2 Verify that the software is running ... 49

7.3 Verify that the sensor is providing data ... 49

7.4 Verify that the solar panel is working ... 50

8 IDSL Remote Verification ... 51

8.1 Verify that the software is running ... 51

8.2 Verify that the disk is not full ... 51

8.3 Verify that the sensor is providing data ... 51

8.4 the webcam cannot be reached .. 51

9 Conclusions ... 52

10 Appendix A – Bash commands Alias for RIO ... 53

4

1 INTRODUCTION

This document describes the activities to be performed at the receipt of a new IDSL in order

to make it operational. The IDSL Installation Guide describes the physical installation of the

IDSL: IDSL Installation Guide 1

The IDSL contains a Raspberry PI device on which the data collection software is installed. It

allows reading the sensors: level, temperature, voltage of the battery, CPU and ambient

temperature, air pressure, but this last only in some recent models.

The software sends the measurements to a server through Internet (using

mobile/broadband/satellite connection). Three implementations are available, in C, C# and

Python. The server, located at the JRC,

 Contains the definition of the device

 Collects the recorded data

 Visualizes the data

 Allows users retrieving selections of the data.

It is possible to connect remotely with the devices having access through a VPN that allows

to perform SSH commands via Internet. A double encryption protects the connection, using

both an encrypted VPN and the ssh protocol to connect with the device.

To initialize an IDSL, it is necessary to:

 Download the image of the basic operating system of the Raspberry PI 2 model 2 and

up

 Copy the software and prepare it for the execution

 Initialize the device

 Activate the VPN to allow a remote connection

If a webcam is also included in the installation kit:

 Download the image of the basic operating system of the Raspberry PI Zero W

 Copy the software and prepare it for the execution

 Initialize the device

IMPORTANT NOTES:

1) As soon as it is possible, do not give the commands copying from this document

but use copy/paste from this docuemnto to the raspberry terminal. This will

avoid to introduce wrong commands in the configuration files.

2) Print this document and mark every step with your signature to be sure you did

exactly all the steps

All the files and scripts described in this note can be found in this web page:

1 https://idslarchive.z6.web.core.windows.net/IDSL Installation Guide v2.pdf

https://idslarchive.z6.web.core.windows.net/IDSL%20Installation%20Guide%20v2.pdf

5

https://idslarchive.z6.web.core.windows.net/

https://idslarchive.z6.web.core.windows.net/

6

2 IDSL INITIALIZATION

Note:
If the device arrives with a preinstalled image, this step and the following are not needed. Skip
them and proceed to paragraph 2.3.

To create a new SD card it is necessary to have:

 the image of the IDSL

 an image writer software

 a SD card reader (it could be external to a laptop or part of a laptop itself)

The initialization of the SD card can be performed in two ways:

 Starting from a prepared image from JRC (this is faster)

 Downloading a basic image from the Raspberry site (this could be necessary either if
the JRC site is not available or if a latest version of Raspberry requires a new image)

2.1 DOWNLOAD A PREPARED IMAGE FROM JRC

The image can be retrieved from JRC and used with an image writer, such as

Win32DiskImager (https://win32diskimager.org/) or any equivalent software.

At this web site the latest IDSL image can be found, together with the software to write the

image on the SD card:

https://idslarchive.z6.web.core.windows.net/IDSL.OS.zip

Using the disk image writer software and a SD card reader it is possible to transfer the image

on the SD card. Then you should perform these steps:

 Enable ssh (see 2.2.5)

With this, you can already access the raspberry at address 192.168.1.101 and the device is
already transmitting the data as IDSL-00 to the server. More details could be set up but the
system should already work with a basic configuration

 Adapt the VPN parameters, from section Error! Reference source not found..

The go to section 3 o identify which software version you want to use.

2.2 DOWNLOAD A NEW IMAGE FROM SCRATCH FROM THE RASPBERRY

SITE

Alternatively, it is possible to download the latest image from the Raspberry official web site

and perform a longer series of preli

 Download and write the image on the SD card

 Install other needed software

 Install the VPN

2.2.1 DOWNLOAD AND INSTALL

https://win32diskimager.org/
https://idslarchive.z6.web.core.windows.net/IDSL.OS.zip

7

Download the software PIImager that allows to prepare the SD card from the official website:

https://www.raspberrypi.org/downloads/raspbian/

Choose the version for the type of computer you are using (Windows, Mac or Ubuntu). Then

launch and select the right version of the OS to install the 32 bit Lite (see 2.2.2). Go to step

2.2.2.

As an alternative you can download the image and use a software tool to flash the SD card.

Again chose the image corresponding to a 32 bit LIte version.Two versions are available, with

or without Desktop: since it is not needed, chose the one without Desktop, e.g.

https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2023-02-
22/2023-02-21-raspios-bullseye-armhf-lite.img.xz).

If the image was downloaded manually, write it on the microSD using Etcher

(https://etcher.io/). This is the recommended tool from raspbian team, and it will burn and

validate the written image in a simple interface.

2.2.2 INTEGRATED TOOL

The dedicated software from Raspberry to write the image on the card can also be used: this

is its interface.

Select the operating system and choose the option 32 bit Lite.

https://www.raspberrypi.org/downloads/raspbian/
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2023-02-22/2023-02-21-raspios-bullseye-armhf-lite.img.xz
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2023-02-22/2023-02-21-raspios-bullseye-armhf-lite.img.xz
https://etcher.io/

8

THIS IS A VERY IMPORTANT POINT. CHOOSE THE RIGHT IMAGE (32 bit Lite)

OTHERWISE ALL THE REST DOES NOT WORK CORRECTLY.

Set Advanced Options

Click on the Gear Button

Select the flag “Set hostname” and insert the name of the IDSL (prefix should be IDSL-). If

yuare testing the system use IDSL-00 as hostname.

Select the flag “Enable SSH” and select “Use password authentication”

Set the flag “Set Username and Password”

9

The following step is not necessary but is important if you are installing the system for

the webcam. So if you are installing the raspberry for the IDSL go to 2.2.3

Set the Wi-Fi Network (if needed) and SAVE it the advanced options

Then press on WRITE to transfer the image on the SD card

It is possible to create manually the Wi-Fi config file (wpa_supplicant.conf)

The file can be created in windows environment and copy on the on the SD boot partition

wpa_supplicant.conf

country=it

update_config=1

ctrl_interface=/var/run/wpa_supplicant

network={

 scan_ssid=1

 ssid="WiFi"

 psk="WifiPass"

}

The boot partition already contain some of the following files :

 bootcode.bin

 loader.bin

10

 start.elf

 kernel.img

 cmdline.txt

The file will be moved to /etc/wpa_supplicant folder after the first boot of the RPI

2.2.3 POWER UP

The next steps will be performed after having turned on the Raspberry with the new SD card

inserted into it, with a keyboard connected to the USB port and a monitor, connected to the

HDMI port. To power up the raspberry, use a power cable connected to the microUSB

connector.

At the first switch-on the system will ask to include a few details like the language and the time

zone.

It will also ask to define a user and password. For the user specify ‘pi’ and for the password

use the standard one ‘raspberry.’ Do not forget to change it, after completing the configuration.

2.2.4 CONFIGURE LAN FOR STATIC IP

Edit dhcpcd.conf with

sudo nano /etc/dhcpcd.conf

Update the static IP settings in the file, normally commented (with # symbols). Remove the #

as first character of the following lines and update their content.

#static IP configuration
interface eth0

static ip_address=192.168.1.101 ## this will be your IP

static routers=192.168.1.1
static domain_name_servers=192.168.1.1

Setting a static IP in the stretch release of Raspbian has changed, because the eth0 is

replaced by the new enx format.

To disable the predictable network names of the interfaces you can run the command below.

However if the system will not ask to reboot it means that this step was not necessary

because the system was already set as needed.

sudo raspi-config

then select 6 Advanced Option > A4 Network Interface Names > No > Back – Finish and

Reboot YES

11

12

https://www.raspberrypi.com/documentation/computers/configuration.html#network-

interface-names

2.2.5 ENABLE SSH

Issue the following command if during the initialization with PI Imager the ssh was not already

enabled:

sudo raspi-config

Select “3 Interface Options”

enable ssh

(To perform this step automatically, include an empty file named ssh in the boot section of the

SD card, at the end of the SD card writing procedure and before inserting it into the raspberry.)

Select Serial port and disable login shell and enable serial port for data.

Now reboot the raspberry either by power-cycle or with the command sudo reboot.

https://www.raspberrypi.com/documentation/computers/configuration.html#network-interface-names
https://www.raspberrypi.com/documentation/computers/configuration.html#network-interface-names

13

Now you should be able to access your Raspberry from a laptop on the same LAN, using an

ssh connection software like putty or MobaXterm by accessing

Address: 192.168.1.101

User: pi

Pwd: raspberry

In order to connect with the raspberry your laptop must be connected with the Teltonika wifi
network . To do that, connect with the wifi (normally SSID=Teltonika or TeltonikaEcml with
password Ecml2011 or 1102lmcE).

From this moment on, the external monitor and the keyboard are no longer needed: the
system can be accessed using a network connection. In any case, from now on the
system needs to access Internet, either provided by the laptop via Ethernet port or with

a direct connection, e.g. Wi-Fi.

2.3 INSTALLATION OF OTHER NEEDED SOFTWARE

2.3.1 UPDATE THE SYSTEM

Before starting, please check that you can go in internet with the raspberry. This can be done

issuing one of the two commands:

ping 8.8.8.8

or

 wget www.google.com

Issue the following command:

sudo apt-get update

Check the system version:

uname –a

It should reply with something like:

“Linux raspberrypi 5.15.84-v7+ #1613 SMP Thu Jan 5 11:59:48 GMT 2023

armv7l GNU/Linux”

Set local time to UTC

sudo dpkg-reconfigure tzdata

When requested indicate “None of the above” and then “UTC”

“Current default time zone: 'Etc/UTC'

Local time is now: Tue Mar 28 10:26:29 UTC 2023.

14

Universal Time is now: Tue Mar 28 10:26:29 UTC 2023.”

2.3.2 ENABLE TIME SERVICE (OPTIONAL STEP)

Only if you want to introduce your own time service, you can follow this

https://wiki.archlinux.org/index.php/Systemd-timesyncd

sudo timedatectl set-ntp true

Modify the ntp servers file including other time servers you would like to include.

sudo nano /etc/systemd/timesyncd.conf

2.3.3 INSTALL WIRINGPI

Use the following commands to install the library needed to interact with devices connected to

the RPi IO:

cd /tmp

wget https://unicorn.drogon.net/wiringpi-2.46-1.deb

sudo dpkg -i wiringpi-2.46-1.deb

Test the installation running this command:

gpio –v

The output should look like

Copyright (c) 2012-2018 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.

For details type: gpio -warranty

Raspberry Pi Details:

 Tyls

lspe: Pi 3, Revision: 02, Memory: 1024MB, Maker: Sony

 * Device tree is enabled.

 *--> Raspberry Pi 3 Model B Rev 1.2

 * This Raspberry Pi supports user-level GPIO access.

gpio readall (to verify the configuration of all the embedded 40 PINs)

2.3.4 INSTALL FTP AND TELNET SERVICES

Install ftp (https://packages.debian.org/stretch/ftp)

sudo apt-get install ftp

https://wiki.archlinux.org/index.php/Systemd-timesyncd
https://packages.debian.org/stretch/ftp

15

Install telnet (https://packages.debian.org/stretch/telnet)

sudo apt-get install telnet

2.3.5 SSHPASS

To install sshpass, https://packages.debian.org/stretch/sshpass, issue this command:

sudo apt-get install sshpass

2.3.6 SERIAL PORT SUPPORT

https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-
3/

With the previous steps, this should not be necessary. Check however the following

sudo nano /boot/config.txt

If it is not present, add the line (at the bottom):

enable_uart=1

If it was not present, disable serial service

sudo systemctl stop serial-getty@ttyAMA0.service

sudo systemctl disable serial-getty@ttyAMA0.service

In case you are installing on a RPI 3, use this syntax:

sudo systemctl stop serial-getty@ttyS0.service
sudo systemctl disable serial-getty@ ttyS0.service

You also need to remove the console from the cmdline.txt. If this file exists, edit it using this

command:

sudo nano /boot/cmdline.txt

If it contains something like:

console=serial0,115200

console=tty1

root=PARTUUID=9298bd00-02

rootfstype=ext4

fsck.repair=yes

rootwait

Remove the line:

console=serial0,115200

Save the file.

https://packages.debian.org/stretch/telnet
https://packages.debian.org/stretch/sshpass
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3/
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3/

16

Reboot the device with

sudo reboot

2.3.7 MINICOM

To check the sensor, use a software to connect to the serial port, such as

sudo apt-get install minicom

In this case, use the following command to see the output from the sea level device

Sudo minicom –b 9600 –D /dev/ttyAMA0

2.3.8 BLUETOOTH

Disable Bluetooth and set /dev/ttyAM0 to real UART (as before).

Edit the file /boot/config.txt and add the following line at the end:

sudo nano /boot/config.txt

Add at the end the following line

dtoverlay=pi3-disable-bt

Save the file and exit.

Then stop Bluetooth service with

sudo systemctl disable hciuart

Reboot the device with

sudo reboot

2.3.9 I2C SUPPORT

I2C is the serial bus used to connect many peripherals, and it is used for the distance sensor.

sudo apt-get install -y python3-smbus

https://packages.debian.org/stretch/python-smbus

The previous package depends on the i2c-tools package that should be installed
automatically. Check it with

dpkg -l i2c*

It should reply with

https://packages.debian.org/stretch/python-smbus

17

Otherwise, install it manually:

sudo apt-get install -y i2c-tools

Then edit the modules file

sudo nano /etc/modules

To add these lines in the file:

i2c-bcm2708

i2c-dev

Check the file /etc/modprobe.d/raspi-blacklist.conf

If the file exists and contains these lines:

blacklist spi-bcm2708
blacklist i2c-bcm2708

Edit them to be

blacklist spi-bcm2708
blacklist i2c-bcm2708

If the file does not exist or does not contain those lines, forget

this point.

Recent version of the operating system use a kernel version 3.18 or higher. It can be checked

using uname -a.

For these versions, it is also needed to update the /boot/config.txt file.

Edit it with sudo nano /boot/config.txt and add the text

dtparam=i2c1=on
dtparam=i2c_arm=on

then

sudo apt-get install libi2c-dev

https://packages.debian.org/stretch/libi2c-dev

2.3.10 SSL SUPPORT

The ssl support must be present. To install it, use

https://packages.debian.org/stretch/libi2c-dev

18

sudo apt-get install libssl-dev

 https://packages.debian.org/stretch/libssl-dev

To use it when accessing websites, check if libcurl is up to date:

sudo apt-get install libcurl4-openssl-dev

https://packages.debian.org/stretch/libcurl4-openssl-dev

In case of failure, look here https://packages.debian.org/stretch/armhf/libcurl4-openssl-
dev/download

Then install bc

sudo apt-get install bc

https://packages.debian.org/stretch/bc

To complete the procedure edit the environment file

sudo nano /etc/environment

 adding the line

LANG=en_US

2.3.11 TURN OFF THE SWAP SPACE

The swap space is an area of the mass storage used to simulate an additional (virtual) memory

of the device. In this case, it is not needed and would age quickly the SD card with no benefit.

To turn off swap use the following command:

sudo systemctl disable dphys-swapfile

then reboot

sudo reboot now

This option might not be permanent, to verify if the swap file is created you can use the
command

 sudo swapon –show

and double check with
free –h

if in the output of the second command you see a line with Swap is still present. If Raspbian
continues to create a swap file after being rebooted, there is always the option to remove the
package that manages it.

sudo apt-get remove dphys-swapfile

sudo apt-get purge dphys-swapfile

https://packages.debian.org/stretch/libssl-dev
https://packages.debian.org/stretch/libcurl4-openssl-dev
https://packages.debian.org/stretch/armhf/libcurl4-openssl-dev/download
https://packages.debian.org/stretch/armhf/libcurl4-openssl-dev/download
https://packages.debian.org/stretch/bc

19

2.3.12 ASSIGN HOSTNAME TO THE DEVICE

If you have not assigned the name at the beginning with PIImager, this will be the name that
will also be sent to the server to store the data

sudo raspi-config

Select System options and then Hostname.

This name must also be present in the file /etc/hosts. If not, edit the file with:

sudo nano /etc/hosts

Include

127.0.0.1 <Name chosen for the hostname>

Save and reboot.

2.4 VPN INSTALLATION

If the ISP is providing the device with a fixed external IP, it will be possible to access the device

remotely. In general this type of connection is more expensive or not available.

Other software, mainly using http tunnelling methods are required to establish with the device

a Virtual Private Network (VPN). Examples of these software are Logmein Hamachi,

Remote.it, TeamViewer and other. JRC used the first one throughout the whole

implementation of the project.

For TeamViewer a good explanation on how to setup is provided here:

https://pimylifeup.com/raspberry-pi-teamviewer/

Anyway, it did not prove to be 100% reliable.

2.4.1 CREATE A USERID IN THE LOGMEIN HAMACHI

Go in https://vpn.net/ and select “sign up” at the top right of the page to create a userid. The
service is free to connect up to 5 devices: since one controlling station such as a PC must be
present in the network, only 4 devices can be added. Subscriptions are available to connect a
larger number of devices, the least expensive allowing up to 32 devices.

Once logged in, the network must be created. This is identified by 3 numbers like:

https://pimylifeup.com/raspberry-pi-teamviewer/
https://vpn.net/

20

ID Name Type Description

395-712-xxx

(xxx is masked in this case)

This 3 digit number is needed to join the network. This operation can be protected by a
password.

Check the last version here https://www.vpn.net/linux

Select the link corresponding to the latest armhf.deb, such as

wget https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-

1_armhf.deb --no-check-certificate

Then, issue the following commands

sudo dpkg -i logmein-hamachi_2.1.0.203-1_armhf.deb

sudo Hamachi

** IF AT THIS MOMENT YOU GET:

Illegal Instruction,

try the following:

Purge the previous installation

dpkg -P logmein-hamachi

Download the ‘el’ version

wget https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-

1_armel.deb

Install the el version forcing the architecture:

sudo dpkg --force-architecture --force-depends -i logmein-hamachi_2.1.0.203-1_armel.deb

https://www.vpn.net/linux
https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-1_armhf.deb
https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-1_armhf.deb
https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-1_armel.deb
https://www.vpn.net/installers/logmein-hamachi_2.1.0.203-1_armel.deb

21

After installing launch the following

sudo hamachi login

sudo hamachi attach xxx@xxx.xx

Specify here the LogMeIn Hamachi account, then

 connect on LogMeIn website https://secure.logmein.com/central/Central.aspx

 accept the pending request in the website of logmein (sometimes it is necessary to

log off and login again to see the pending request)

 configure the network in “non-members”

 edit the client to select the right network

 on the device perform the following commands:

 sudo hamachi set-nick "yyyyy" (example: IDSL-401)

sudo hamachi do-join 382-886-xxx (the ID of the network)

sudo nano /var/lib/logmein-hamachi/h2-engine.cfg

 search and change the keyword LoginOnLaunch

set LoginOnLaunch=1

On the controlling PC or laptop, the LogMeIn Hamachi client must be installed as well from:

https://vpn.net/

The tool allows monitoring the network and identifying the devices addresses to connect with.

mailto:xxx@xxx.xx
https://secure.logmein.com/central/Central.aspx
https://vpn.net/

22

From this moment on, the Raspberry can be reached from everywhere. It is also possible to

join more than one network. This can be useful for instance to delegate the maintenance of all

the devices to the same organization; while all other organizations can access only their own

device.

23

3 INSTALLATION OF IDSL SPECIFIC SOFTWARE

There are 3 possible versions of the software to install:

 The c version (tad)

 The python version (pyTAD)

 The C# version (RIO)

The c version is the first that was developed and runs on all the raspberry versions while the

python and C# require at least an ARMv7 CPU.

The python version is relatively simple to install and has the same configuration as the c

version. The software is contained in a GitHub space.

The RIO version can be installed on IDSL or TAD panels just by modifying its configuration

file (that however is a bit different from the python version but with similar keys.

All the initial IDSLs use the c version while the more recent ones the python version. The TAD

panels all the RIO version. The software modes can be interchanged but only one can be

made working.

Before starting, download this file and unzip it:

wget https://github.com/annunal/pyTAD/archive/refs/heads/main.zip

unzip main.zip

rm main.zip

Create the script folder and copy the files there:

sudo mkdir /home/script

sudo cp /home/pi/py-main/scripts/* /home/script

make all the files with extension sh executable:

sudo chmod +x /home/script/*.sh

Activating the crontab statements included in the script directory, the acquisition with one or

the other software should start. The activation of the crontab is described later.

The choice of the software to be used is done by changing one line in the file SetVars.sh in

the script folder, the mode is set by modifying the following line:

##***********************************

export modeTAD=pyTAD # TAD or pyTAD or RIO

#***********************************

https://github.com/annunal/pyTAD/archive/refs/heads/main.zip

24

3.1 C VERSION OR TAD

The python version of the software can be downloaded here:

https://github.com/annunal/TAD

wget https://github.com/annunal/TAD/archive/refs/heads/main.zip

unzip main.zip

This will create a directory TAD-main. You have 2 possibilities:

- Use the precompiled version

- Recompile the source code

3.1.1 USING THE PRECOMPILED VERSION

To use the precompiled version, copy the folder TAD0 in the folder /home/pi/programs (if it

does not exist, create it):

mkdir /home/pi/programs

cp -r /home/pi/TAD-main/TAD0 /home/pi/programs

chmod +x /home/pi/programs/TAD0/*.sh

chmod +x /home/pi/programs/TAD0/tad*

To test the system, copy the files in a temporary directory on /tmp and launch the program:

mkdir /tmp/TAD

cp /home/pi/programs/TAD0/* /tmp/TAD

cp /home/pi/programs/TAD0/periodic/* /tmp/TAD

sudo /tmp/TAD/tad

The program should start collecting the data:

https://github.com/annunal/TAD

25

3.1.2 RECOMPILING THE SOURCE CODE

Identify and move to src_2018 folder:

cd /home/pi/TAD-main/src_2018

make

This should create a fresh new tad program.

Follow all the steps described in 3.1.1. At the end, delete the file tad and replace it with the

one just created (you could move the file, but this is to be sure that you are using the newly

created executable).

rm /home/pi/programs/TAD0/tad; rm /home/pi/programs/TAD0/tad1;

rm /home/pi/programs/TAD0/tad-retry

rm /tmp/TAD/tad*

cp /home/pi/TAD-main/src_2018/tad /home/pi/programs/TAD0/tad

cp /home/pi/TAD-main/src_2018/tad /home/pi/programs/TAD0/tad1

cp /home/pi/TAD-main/src_2018/tad /home/pi/programs/TAD0/tad-retry

cp /home/pi/TAD-main/src_2018/tad /tmp/TAD

To check that the files are identical you can use the diff command:

diff /home/pi/TAD-main/src_2018/tad /tmp/TAD/tad

You can test the execution as in the previous case launching the command:

sudo /tmp/TAD/tad

If all works fine, you should see the log of the acquired data such as the image below and to

check if the data are properly updated verify the page on JRC site:

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00

If in the setVars.sh script, as described at the beginning of chapter 3 you have indicated TAD

the c version of the programme will start automatically (after having copied all the scripts).

3.2 PYTHON VERSION OR PYTAD

3.2.1 PYTAD DOWNLOAD AND INSTALL

The python version of the software can be downloaded here:

https://github.com/annunal/pyTAD/tree/main/prog

wget https://github.com/annunal/pyTAD/archive/refs/heads/main.zip

unzip main.zip

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00
https://github.com/annunal/pyTAD/tree/main/prog
https://github.com/annunal/pyTAD/archive/refs/heads/main.zip

26

rm main.zip

This will create a directory pyTAD-main. The program will run from the directory prog inside

this directory.

Create a folder under the /home/pi directory named programs/pyTAD and copy here all

the files contained in the URL (Uniform Resource Locator) indicated before.

 mkdir /home/pi/programs

 mkdir /home/pi/programs/pyTAD

cp /home/pi/pyTAD-main/prog/* /home/pi/programs/pyTAD

To run the software, it is necessary to install the following packets, if python3 is not installed:

sudo apt-get install python3

sudo apt-get install python3-pip

sudo pip install psutil requests numpy paho-mqtt pyserial

sudo pip install wiringpi2

sudo pip3 install smbus

sudo pip install pycountry-convert

Please note that this will take a few minutes to install.

If the pressure sensor is also installed:

sudo pip3 install adafruit-circuitpython-bmp3xx

sudo apt-get install libatlas-base-dev

sudo pip install pybind11

To check if the software is correctly configured, run the script, even if the configuration file
(config.txt) should be modified and updated: this can be done later. Run the commands:

cd /home/pi/programs/pyTAD_

sudo python tad.py –c ./

If all works fine, you should see the log of the acquired data such as the image below and to

check if the data are properly updated verify the page on JRC site:

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00

3.2.2 CONFIGURATION OF THE DEVICE

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00

27

If the C or the python version are used, a configuration file, named config.txt must be present
in the folder, where the software runs.

An example of configuration file is provided here:
https://github.com/annunal/pyTAD/blob/main/other%20files/config.txt

All configuration keywords are explained here (lines starting with * and # are comments and
are disregarded by the software):

** Generals

title = name of the device
location = location of the device
position = latitude,longitude of the device, separated by comma

IDdevice = ID of the device as is in the web repository. To use the name of the device, use $HOSTNAME
SaveURL = URL to save data
#SaveURLb = Second URL to save data
AlertURL = URL to alert

** Photo shot commands

PhotoCMD = Internal URL to shot a photo
PhotoTimeInterval= Time interval in minutes to shot a photo after an alert
PhotoAlertLevel = Alert level to shot an image

**
** Alerts parameters
**
AlertLevel = Alert is issued if Alert Level is larger than this value

** Email parameters
EmailTo = list of email addresses, comma separated
EmailURL = URL of the service to send out emails
EmailTemplate = Template file containing the email body
EmailSubject = Template file containing the email subject
AlertTimeInterval = Time interval after which, if still in alert mode, another alert is sent

** SMS (Short Message Service) parameters
SMSowners = List of SMS recipient names (for reference)
SMSlist = List of comma separated recipient phone numbers complete with country codes
SMSURL = URL of the service to send out SMS
SMSuser = userid to send out SMS messages (*** ASK JRC)
SMSpwd = password to send out SMS messages (*** ASK JRC)
SMSTemplate = Template file for the SMS messages

**
** Periodic messages
**
TemplatePeriodic_SMS_Msg = Template file for a periodic test SMS message
SMSlistPeriodic = List of phone numbers, comma separated, that will receive a periodic SMS
SMSowners_ADM = List of the names associated to administrative phone numbers for reference
SMSlistPeriodic_ADM = List of SMS numbers, comma separated, that will receive a daily Admin SMS

EmailToPeriodic = List of email addresses, comma separate that will receive a periodic email
EmailToPeriodic_ADM = List of email addresses, comma separate that will receive a daily periodic

admin email

TemplatePeriodic_EMAIL_Body = File containing the email body template for periodic email
TemplatePeriodic_EMAIL_Subj = File containing the email subject template for periodic email

** 4=Wednesday -1=daily

https://github.com/annunal/pyTAD/blob/main/other%20files/config.txt

28

Periodic_Day = The week day for periodic emails (4=Wednesday -1=daily)
Periodic_Day_ADM = The week day for periodic admin email (4=Wednesday -1=daily)
Periodic_hour = The time (UTC) of the day at which the periodic email are sent

* Analysis parameters
* Ref: https://www.mdpi.com/1892362

Interval = Acquisition interval (seconds)
n300 = Number of points for Long Term Forecast
n30 = Number of points for Short Term Forecast
threshold = Threshold for activation of calculation (m), see Ref
ratioRMS = RMS ratio (see ref)
AddRMS = Addition to LTF-STF difference (m, see ref)
backFactor = not used, obsolete
methodInterp = not used, obsolete
servo = not used, obsolete

* The level is provided as:
* level= sensorMultFac * MEASLEVEL + sensorAddFac
* MEASLEVEL is the distance between the sensor and the water
* you can correct the offset

sensorMultFac = multiplication factor for the level
sensorAddFac = addition factor for the level

The level is computed as follows:

L= sensorMultFact * measLevel +sensAddFac

MeasLevel is the value provided by the sensor, that is the distance between the sensor and

the water surface. So the sensorMultFact must be -1 in order to invert the measurement and

the sensAddFac will add a constant that should represent the difference between the elevation

of the sensor and the bottom of the water below the sensor. In such a way the level will

represent the water level below the sensor.

SonarMinLevel = Minimum measurable level of the Level sensor
SonarMaxLevel = Maximum measurable level for level sensor
SonarMaxDifference = Maximum difference above which the measure is considered an outlier

Serial = Address of the serial port (usually, /dev/ttyAMA0)
BaudRate = Baud rate for the Serial port (9600)
batteryPin = Pin for reading battery value (5, fixed)
batteryMultiplier = Battery value multiplier (you can calibrate the voltage)

panelMultiplier=not used, obsolete
panelPin = not used, obsolete

sonarTempPin = Pin for reading temperature

**
* Temperature is provided as: 1/Temp=SonarTempMultiplier* MEASTEMP+SonarTempAddConst
* you can adjust those quantities if not correct
**
SonarTempMultiplier =Multiplication factor for the temperature sensor
SonarTempAddConst =Addition factor for the temperature sensor

29

**
SaveAllData = All data are saved (1=yes, 0=no)
simSonar = Simulation of acquisition (1=yes, 0=no)
voltageInterval = not used, obsolete

The operational location of the files is under /home/pi/programs/

When using the python version (pyTAD), create a directory pyTAD and copy there all the files

that were contained in the installation directory:

cp /home/pi/pyTAD_main/prog/* /home/pi/programs/pyTAD

because the scripts assume that the starting location is /home/pi/programs/pyTAD

30

3.3 C# VERSION OR RIO

On the hardware platform developed for the IDSL, the JRC developed RIO (Remote

InterOperability), a guest operating system to develop, operate and maintain a network of

devices.

The software is based on .Net, and requires a simple set-up. Additional information are

available at this page: The Remote InterOperability Platform.2

.Net requires ARMv7 architecture devices as minimum: therefore, it is not compatible with

Rasperry Pi Zero, 1 and 2. Please, refer to the Specifications table in Raspberry Pi - Wikipedia

to know which are the compatible models.

3.3.1 RUNTIME INSTALLATION

To minimize the number of files to be deployed with every version of the software, the RIO

version of the software is distributed as framework-dependent (for reference, see Deploy .NET

apps to ARM single-board computers | Microsoft Learn3).

To set up the framework, this command will download and install the latest version available:

curl -sSL https://dot.net/v1/dotnet-install.sh | bash /dev/stdin --channel STS

To make the runtime available more easily, run the following commands:

echo 'export DOTNET_ROOT=$HOME/.dotnet' >> ~/.bashrc

echo 'export PATH=$PATH:$HOME/.dotnet' >> ~/.bashrc

source ~/.bashrc

To test the .Net installation, verify it with this command:

dotnet --version

3.3.2 RIO INSTALLATION

The IDSL scripts assume RIO to be installed in /home/pi/programs/RIO

It is a safe habit to deploy the software in a folder with a meaningful name, such as RIO.3.2.0

from its version number, and link to it the RIO name:

ln –s /home/pi/programs/RIO.3.2.0 /home/pi/programs/RIO

This way it will be easier to maintain a history of the versions and refer to them, in case of

problems with a newer version.

2 https://www.codeproject.com/Articles/5331192/The-Remote-InterOperability-Platform
3 https://learn.microsoft.com/en-us/dotnet/iot/deployment

https://www.codeproject.com/Articles/5331192/The-Remote-InterOperability-Platform
https://en.wikipedia.org/wiki/Raspberry_Pi
https://learn.microsoft.com/en-us/dotnet/iot/deployment
https://learn.microsoft.com/en-us/dotnet/iot/deployment
https://www.codeproject.com/Articles/5331192/The-Remote-InterOperability-Platform
https://learn.microsoft.com/en-us/dotnet/iot/deployment

31

The software can be:

 either built, using the Open Source version published on ec-jrc/RIO: Remote

InterOperability, an IoT solution (github.com)4

 or download a precompiled version from RIO-IDSL.zip5

Building the software

To build the software, it is necessary to

 set up a development machine

 acquire the sources

 build the software

 transfer the software on the device

The current version of RIO is tested and validated against .Net 3.1. As soon as validated

against .Net 6, the new version will be available from the same repository.

The software must be prepared using another machine, either Windows or Linux, to download

and build the software, since the development kit is not available for the Raspberry platform.

To build from a command line environment, acquire the Software Development Kit from

https://dotnet.microsoft.com/en-us/download/dotnet/3.1

and download the version related to the OS on which you are preparing the files (Windows or

Linux).

Acquire the source code as a zip file, or using git (if you do not have you should install it from

https://git-scm.com/downloads). Then use the command:

git clone https://github.com/ec-jrc/RIO.git

In the source root, compile with command:

cd RIO\TAD

dotnet publish –r linux-arm –c Release .\TAD.csproj

The command will create a complete distribution of the software under

RIO/TAD/bin/Release/net6.0/linux-arm or similar.

It is easier and faster compressing the folder and transfer the compressed file to the device

instead of transferring all files one by one. So compress the folder linux-arm into a file named

RIO-IDSL.zip

From this moment on, the procedure is the same of precompiled software.

Using compiled software

4 https://github.com/ec-jrc/RIO
5 https://idslarchive.z6.web.core.windows.net/RIO-IDSL.zip

https://github.com/ec-jrc/RIO
https://github.com/ec-jrc/RIO
https://idslarchive.z6.web.core.windows.net/RIO-IDSL.zip
https://dotnet.microsoft.com/en-us/download/dotnet/3.1
https://github.com/ec-jrc/RIO/archive/refs/heads/main.zip
https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/ec-jrc/RIO.git
https://github.com/ec-jrc/RIO
https://idslarchive.z6.web.core.windows.net/RIO-IDSL.zip

32

Transfer the compressed file, e.g. RIO-IDSL.zip, to /home/pi/programs

Unpack the software: unzip RIO-IDSL.zip

Assign a meaningful name to the unpacked folder, e.g.

mv linux-arm RIO.3.2.0

In case the RIO name is already in use, delete it:

rm RIO

Assign the RIO name to the new version of the software:

ln –s RIO.3.2.0 RIO

The final step requires the program to acquire the executable status, since it is transferred as

an ordinary file:

cd RIO

chmod a+x TAD

Launch for the first time the TAD programme, so that an initial Settings.json file is created that

can then be fine tuned later.

sudo ./TAD

If all works fine, you should see the log of the acquired data such as the image below and to

check if the data are properly updated verify the page on JRC site:

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00

The elapsed time should be within few seconds.

https://webcritech.jrc.ec.europa.eu/TAD_server/Device/IDSL-00

33

3.3.3 RIO INITIALIZATION

The RIO platform is a modular system that uses plugins to extend its base functionality. When

the system starts, plugins are loaded and configured. In case a configuration is not found, a

default one is created. This allows users to have a starting point to configure the required

functionality.

The configuration is stored in Settings.json, a file located where the software is running. If

necessary, it will be created when the software runs for the first time. The best practice for a

completely new device, is to start RIO and wait for the initialization to complete, then stop it

and customize the settings.

The configuration contains general settings for the RIO system and specific settings for each

plugin. It is possible to create different instances of the same functionality: for instance, it is

possible to equip a RIO device with more sensors of the same type and configure each one

differently using the same plugin more times. The plugins are searched in all the libraries (the

files with names ending in .dll) with a names starting with JRC. or RIO. or TAD.

The IDSL functionality is provided by the library JRC.IDSL.dll.

To ease the user’s experience, a few commands (to be launched in the bash shell of the

raspberry) are available to manage the RIO system:

kr: stops any running RIO instance

lr: shows continuously the log created by the RIO system

rioset: starts an editor to edit the Settings file

34

riotel: opens an interactive session with the local RIO system

In order to have these commands in your system, please follow the instructions provided in

Appendix A.

Keep in mind that editing the Settings file does not change the behaviour of the running

instance: to let the new settings be used, save the file and stops the RIO. It will start in a

minute or less using the new configuration.

Using rioset, start an editor session. The Settings file will list both the general settings and at

least one settings section for each functionality. The best part of these sections will include

“enabled”: false

This means the functionality, though configured, is not used.

The main component of an IDSL based on RIO, but there are additional components to read

the device status, to acquire additional readings, and to perform scheduled activities.

General settings

At the beginning of the file, usually there is the Id of the system. It is common practice to use

the hostname, but it is not mandatory.

The Id will be given the initial value RIO-Uninitialized_device, change it to needed string.

At the bottom of the file, there is the rest of the RIO system configuration: every time RIO

saves the Settings, it will use again this order: Id at the top, followed by all specific settings for

the installed features, then the general settings, that are explained below.

 Queue: this is the connection string to a REDIS cache system used to queue the

messages to and from RIO; using ssl is strongly advised. Both the queue ad the

credentials should be requested to JRC if the JRC TAD_server is used for storing the

data.

 QueueCredentials: if needed (best practice), the password protecting the REDIS

cache

 WebAccess: the URL where to post the telemetry information in case of REDIS failure

 LocalManagement: if true, activates a local listener on port 4005 to allow interactive

sessions on RIO

 EnableSlack: if true, it activates interactions with slack and the RIO will report through

it booting, errors and the like; it will also have perform commands with some limitations

 SlackToken: the token of the Slack channel to refer to

IDSL settings

Look for the section in the file related to the IDSL module, that looks like this:

 {

 "Enabled": false,

 "Id": "IDSL",

35

 "Type": "Idsl",

 "Properties": {

 "Port": "/dev/ttyAMA0",

 …

 }

 },

Enabled must be true to use the IDSL component of the system.

The Id allows differentiating several instances of the same type. The common practice uses

IDSL.

The Type is there to identify which plugin will manage this part of the device and must not

change.

The table below shows all settings used by the IDSL module.

Name Default Type Description

Port COM1 string Address of the serial port (usually,
/dev/ttyAMA0)

Output

string If it is a number, it will be used as a
network port where to accept clients:
all readings will be repeated to all
connected clients. Otherwise, it is
used as a serial port name where to
write all data read from the sensor.

Speed 9600 int Baud rate for the Serial port

ShortWindow 60 int Number of points for Short Term
Forecast

LongWindow 600 int Number of points for Long Term
Forecast

Ratio 4 float RMS ratio (see ref)

Threshold 0.1 float Threshold for activation of
calculation (m), see Ref

Period 5 float Acquisition interval (seconds)

AddRMS 0.1 float Addition to LTF-STF difference (m,
see ref)

BackFactor 0 int Not used, obsolete

SensorMultFac -1 int Multiplication factor for the level

SensorAddFac 0 float Addition factor for the level

SonarMinLevel 0.3 float Minimum measurable level of the
Level sensor

SonarMaxLevel 5 float Maximum measurable level for level
sensor

SonarMaxDifference 0.5 float Maximum difference above which
the measure is considered an outlier

MaxDelay 60 int This is the number of seconds after
which the algorithm is reinitialized, if
no data was acquired

SaveAllData AllData_{0:yyyy-MM-
dd}.log

string If present, this template is used as
the name of the file where to store

36

all data read from the sensor. It can
be a complete path, starting with ‘/’.

DumpBuffer buffer.txt string If present, this file is used to preserve
the status of the algorithm and used
to reinitialize it when starting. If older
than MaxDelay seconds, it is not used
and deleted. It will always be located
under /tmp.

Additional readings

Additional information are retrieved from the device using another module, JRC.Power.dll.

They will send their readings separately, depending on the desired time interval. This is an

example of the same module, AnalogMeasure, used for two different tasks.

Below, the configurations of the three readings will be described.

The module AnalogMeasure is configured to read from an I2C channel every 180 seconds, 3

minutes, and convert the raw value into a Voltage measure of the battery charge status.

{

 "Enabled": true,

 "Id": "Battery",

 "Type": "AnalogMeasure",

 "Properties": {

 "Measure": "Voltage",

 "Frequency": "180",

 "Channel": "1699C",

 "Multiplier": "5.5",

 "Offset": "0"

 },

 "Version": "1.1.1"

}

In the following case, the same module AnalogMeasure is configured to convert the raw value

read from another channel every 60 seconds into the temperature external to the device box.

{

 "Enabled": true,

 "Id": "AirTemperature",

 "Type": "AnalogMeasure",

 "Properties": {

 "Measure": "Celsius",

 "Frequency": "60",

 "Channel": "16AFC",

 "Multiplier": "-56",

 "Offset": "93.65"

 },

 "Version": "1.1.1"

}

37

The thermometer component is subject to some production variability. It can happen it appears

on a different I2C location, for instance. Use i2cdetect to find it an put the location in the

Channel propriety as second and third hex digit: "Channel": "1hhFC".

For the same reason, the Offset and the Multiplier can be different. To tune the sensor, use

two random values, e.g. Offset0 = 10 and Multiplier0 = -20; then measure twice the temperature

with an alternative mean and record the measurements generated by the device. Let the

measured temperatures be T1 and T2, and their difference ∆T. Let the measurements from the

device be D1 and D2, and their difference ∆D. Let the arbitrarily chosen offset and multiplier be

Offset0 and Multiplier0. These equations will provide the operational values for Offset and

Multiplier.

Offset = 𝑇2 −
∆𝑇

∆𝐷
∙

𝐷2−𝑂𝑓𝑓𝑠𝑒𝑡0

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟0

Multiplier =
∆𝑇

∆𝐷

To read the temperature of the CPU of the Raspberry, it is used a different module of the same

library: CpuTemp, that acquires it from a system generated file.

{

 "Enabled": true,

 "Id": "CpuTemperature",

 "Type": "CpuTemp",

 "Properties": {

 "Period": "900",

 "Scale": "0.001",

 "Path": "/sys/class/thermal/thermal_zone0/temp"

 },

 "Version": "1.0.0"

}

Scheduled activities

The RIO systems use two schedulers at the time: one is used to analyse and react to

messages on the alert channels and is used mainly by alerting devices (e.g. Tsunami alerting

panels or sirens) and the other is used to schedule periodic activities.

Ruleset.json is used for the alerting devices, while crontab.json is used for all tasks.

The crontab file is divided in two sections: schedules and commands. In both the configuration

and the last readings of all the RIO modules are available.

Schedules

This section allows defining when the operations described in the second section must be

performed.

To interpret a line like the following

* * * * * * 900 Battery_Voltage < 11.5 lowBattery

The structure is:

38

Second: the system time second must match this value(s), 0-59

Minute: the system time minute must match this value(s), 0-59

Hour: the system time hour must match this value(s), 0-23

Weekday: the system time day of the week must match this value(s), Mon-Sun

Day: the system time day of the month must match this value(s), 1-31

Month: the system time month of the year must match this value(s), 1-12

Delay: after a successful match, the schedule must not be evaluated before this number of

seconds has passed

Condition: this is optional and allows a complex combinations of conditions (including

parenthesis, mathematical expressions and AND and OR operators) to be evaluated together

with the schedule: if both matches, the operation is performed. In the example, the last value

assigned to the reading Voltage of the module Battery is verified.

Command: the name in the next section of the operation to be performed if the schedule is

evaluated successfully

The example checks every 15 minutes (900 seconds) that the Voltage of the Battery is not

below the threshold of 11.5 V. if it is, the lowBattery command is executed.

Every quantity of the schedule can be:

- A *, that matches any value

- A value, that is matched by the same quantity

- An interval, that matches all values from the first to the last

- A comma separated list of values, of which one must match

- Two quantities separated by / meaning that either the first value or the same

with an arbitrary quantity of the second value will match

This means that 0,15,30,45 for seconds or minutes has the same effect of 0/15.

Commands

Using the same names occurring in a schedule, in this section are listed the operations to be

performed, given the module to be used, the name of the command and all the parameters.

The lowBattery command of the above mentioned example will be:

 "lowBattery": {

 "Target": "SlackManager",

 "Command": "send",

 "Parameters": {

 "channel": "rio",

 "message": "Battery low: $Battery_Voltage",

 "symbol": ":warning:"

 }

 }

39

It will request the SlackManager, the module in charge of using Slack to send messages, to

perform the send command, using the given parameters.

If the SlackManager is not enabled, the operation will fail. All operations executions are

reported in the log file.

40

4 OTHER SETTINGS

4.1 SMS COMMANDS FOR RPI

To finalize the connection between the Raspberry and the Raspberry Nano and to allow

executing commands via SMS, it is possible to launch the following commands; the system

will ask several times the Teltonika password:

ipTeltonika='192.168.1.1
cd /home/script

sudo echo $HOSTNAME > sms_config.txt

ip=$(ifconfig eth0| sed -En 's/127.0.0.1//;s/.*inet (addr:192)?(([0-9]*\.){3}[0-9]*).*/\2/p')

echo $ip>sms_IP.txt

scp sms_config.txt root@$ipTeltonika:/sbin/sms_config.txt
scp sms_IP.txt root@$ipTeltonika:/sbin/sms_IP.txt

scp sms_command.sh root@192.168.1.254:/sbin/sms_command.sh
ssh root@$ipTeltonika rm /root/.ssh/id_rsa

echo "#! /bin/sh" > sms_init.sh

echo 'mkdir ~/.ssh'>> sms_init.sh

echo "dropbearkey -t rsa -f ~/.ssh/id_rsa">> sms_init.sh

echo "crontab -l>crontab.txt">> sms_init.sh

Echo "echo '*/1 * * * * /bin/sh /sbin/sms_command.sh read > /root/sms_log.txt'>>crontab.txt">>sms_init.sh

echo "crontab crontab.txt">>sms_init.sh

scp sms_init.sh root@$ipTeltonika:sms_init.sh
ssh root@$ipTeltonika 'chmod +x sms_init.sh;sh sms_init.sh'

echo 'copy the Teltonka public key in the authorized keys (from ss-rsa... to RUT230.com'

cd /home/pi/.ssh

echo 'vi /home/pi/.ssh/authorized_keys'

Copy the public key of Teltonika in the file /home/pi/.ssh/authorized_keys

The public key is: the section printed on the screen between ssh-rsa... and RUT230.com. For

example in the case below is the red section. Copy and paste it in the file

/home/pi/.ssh/authorized_keys

Give permission 600 to /home/pi/.ssh/authorized_keys:

chmod 600 /home/pi/.ssh/authorized_keys

chmod og-w /home/pi

Login into Teltonika router from client machine:

ssh root@192.168.1.1

Check the connection from the Teltonika router:

ssh -i /root/.ssh/id_rsa pi@192.168.1.101 ls

41

In case the Raspberry Pi adopts the default configuration; otherwise, edit the IP address

accordingly.

Check sending an SMS:

wget "http://192.168.1.1/cgi-

bin/sms_send?username=user1&password=user_pass&number=00ccxxxxxxx

xxx&text=IDSL-19" -O out.txt

Where cc is your country code and xxxxxxxxxx is the phone number that will receive the

SMS.

If the command fails, check the allowed numbers (phone numbers authorized to

send/receive SMS in the Teltonika device) in the Teltonika web interface, by sending a

SMS through the services offered by the Teltonika software. Open the web site:

http://192.168.1.1 and navigate to the appropriate SMS services. If the SMSs is not sent either,

probably this service is not allowed by the Telecom company.

How to use the system:

Send an SMS to the number of the SIM on the device, with one of the available commands:

CMDTELT [cmd] to execute commands on Teltonika

CMDRPI [cmd] to execute commands on Raspberry

The result will be sent back by SMS to the sending number.

The numbers that are allowed to issue commands are identified in the file sms_command.sh

and must be modified before performing the above procedure or need to be updated in the

Teltonika router. Search for this piece of code:

number authorized to send commands

ALLOWED_NUMBER1="+393299662159" # this is an exampe...put your number

ALLOWED_NUMBER2=""

REPLYNUMBER="+393299662159"

And include up to 2 numbers.

4.2 UPDATE CRONTAB

Finally, the crontab should be updated to start the software after the boot and to check that

the software is running. An example of crontab is included in the gitHub repository in the

section ‘other files’. It is also available in the folder pyTAD-main/other files.

If you have installed the python version you should have the file below. If you did not, just
download the gitHub file and unzip the file (first 4 lines of the chapter 3.2).

To load the crontab in the system launch the command:

42

sudo crontab ’/pi/home/pyTAD-main/other files/crontab.txt’

43

5 SAVING THE PREPARED IMAGE

Once you have created your image of the raspberry or simply if you want to store the image

received from JRC and personalized for your specific device, it is possible to do it by saving

the image using the same software (Win32DiskImager) that was used to flash the SD card.

However the problem is that the size of this image will be related to the whole size of the SD

card used (i.e. 16 GB). When you later will try to flash another card with this same image it

may happen that if the size of the receiving SF card is not just a bt larger than this one it will

not fit in.

For this reason a software can be used that creates a shrink image much smaller than the

size of the SD card.

Download the GitHub set of commands:

wget https://github.com/seamusdemora/RonR-RPi-image-

utils/archive/refs/heads/master.zip

Extract the zip:

unzip master.zip

Insert a USB memory card in the raspberry. The size should be at least 4 GB to get the image

of the raspberry. Prepare the raspberry to read the usb by installing the ntfs protocol

(https://raspberrytips.com/mount-usb-drive-raspberry-pi/):

sudo apt install ntfs-3g

Create the mount point

sudo mkdir /mnt/usb

In general the usb should be identified as /dev/sda1. Using this command it is possible to see

the name of the USB card:

sudo ls -l /dev/disk/by-uuid/

If the name is sda1 you can mount the USB

sudo mount /dev/sda1 /mnt/usb -o uid=pi,gid=pi

Now the USB is present as a file system under /mnt/usb and you can give the command

below to produce the image. Please use all the default replies proposed by the syste,; the

command will take several minutes to complete:

cd /home/pi/RonR-RPi-image-utils-master

sudo image-backup

 Image file to create?

reply with a filename on the /mnt/usb such as :

/mnt/usb/image_raw_2023-05-18.img

https://github.com/seamusdemora/RonR-RPi-image-utils/archive/refs/heads/master.zip
https://github.com/seamusdemora/RonR-RPi-image-utils/archive/refs/heads/master.zip
https://raspberrytips.com/mount-usb-drive-raspberry-pi/

44

6 WEBCAM INITIALIZATION

The webcam contains a Raspberry Zero W; its initialization is like the Raspberry present in
the IDSL but it is simpler because not all the steps are necessary.

6.1 DOWNLOAD THE IMAGE OF THE BASIC OPERATING SYSTEM OF THE

RASPBERRY W

The SD card initialization can be performed in 2 ways:

 Starting from a prepared image from JRC (this is the fastest way)

 Downloading a basic image from the Raspberry site (this could be necessary either if
the JRC site is not available or if a latest version of Raspberry requires a new image).

6.1.1 DOWNLOAD A PREPARED IMAGE FROM JRC

Note:
If the device arrives with a preinstalled image this step and the following one are not needed.
Proceed to section 6.2.

To create a new SD card it is necessary to have:

 - The image of the IDSL

 - An image writer software

 - An SD card reader (it could be external to a laptop or part of a laptop itself)

The image can be retrieved from JRC together with an image writer, such as Win32DiskImager
(https://win32diskimager.org/) or any other equivalent software.
At this web site the latest IDSL image can be found, together with the software for writing the
image of the SD card:
https://idslarchive.z6.web.core.windows.net/Webcam.OS.zip
Using the disk image writer and a SD card reader it is possible to transfer the image on the
SD card and go to section 6.2.

After that, as in the case of the Raspberry, proceed to assign a hostname and to install the
VPN.

6.1.2 DOWNLOAD A NEW IMAGE FROM SCRATCH FROM THE RASPBERRY

WEBSITE

Alternatively, it is possible to download the latest image from the Raspberry official web site
and perform the preliminary operations described below:

 Download and write the image on the SD card

 Install other needed software
 Install the VPN

To download the SD image follow the same procedure described for the Raspberry PI in
chapter 2.2.

In this case it is particularly important to correctly setup the WIFI at the startup because
this will be the only way that the Raspberry can communicate with the webcam. In this
case the WIFI is offered by the Teltonika router, so the SSID will be “Teltonika” or
“TeltonikaEcml” and the password will be either 1102lmcE or Ecml2011. For the

correct ssid and password try to connect to it with a laptop and mark down ssid and password.

https://win32diskimager.org/
https://idslarchive.z6.web.core.windows.net/Webcam.OS.zip

45

If you do not follow the automatic method offered by the raspberry programme, as described
in chapter 2, you can also in this case create a text file named wpa_supllicant.conf in the boot
section of the SD card (editable in Windows), with the following content:

country=us
update_config=1
ctrl_interface=/var/run/wpa_supplicant

network={
 scan_ssid=1
 ssid="MyNetworkSSID"
 psk="Pa55w0rd1234"
}

In ssid and psk include the ssid you marked down and the related password.

Be careful that the EOL method is for Unix (or Linux) and not Windows. This can be done
using an editor such as Notepad++ which allows to establish the EOL method.

The first time that the RPI Zero W will boot, it will resize the file-system to the size of the card.
With the new OS (Operating System) version (at the moment it is the Raspbian 11 Bullseye
32 bit), it will ask for a username and a password (default user pi and password raspberry)
if not configured through the advanced options in chapter 2.2.

The RPI Zero W has a Mini HDMI port, so it is necessary to have an HDMI to mini HDMI cable

To use a keyboard it is necessary to have a micro to USB-A adapter:

46

Connect the power charger (microusb) to the first port. The power supply should provide 1.2A
(see Power Supply specs)

Connect the camera to the CSI camera connector (v1.3 only)

Impose a static IP following the instruction at 2.2.4 and impose 192.168.1.175 as address of
the wifi (wlan0) and IP 192.168.1.175.

Edit dhcpcd.conf with

sudo nano /etc/dhcpcd.conf

Add the static IP settings to the end of the file like this

#static IP configuration
interface wlan0

static ip_address=192.168.1.175 ## this will be your IP

static routers=192.168.1.1
static domain_name_servers=192.168.1.1

Then prepare the SD card to install the needed software:

sudo apt-get update
sudo apt-get upgrade

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html%23power-supply

47

Install the software dependencies
sudo apt-get install bc

sudo apt-get install imagemagick

sudo apt-get install ftp telnet

The camera is already enabled on the latest OS.

Now you should be able to take pictures with the command:
libcamera-jpeg -o firstImage.jpg -t 2000

The official documentation is available at:

https://www.raspberrypi.com/documentation/accessories/camera.html

6.2 COPY THE SOFTWARE AND PREPARE IT FOR THE EXECUTION

The only software to install are a few scripts and the crontab configuration, that allows taking
one picture at a fixed interval (1h or 15 min or whatever you prefer). The images are then
uploaded on the JRC web site; but it is possible to modify the location for the upload.

Download again the whole package of pyTAD from:

wget https://github.com/annunal/pyTAD/archive/refs/heads/main.zip

unzip main.zip with the command:

 unzip main.zip

Identify the folder:

/home/pi/pyTAD-main/scripts/webcam

Create a folder script under /home and copy there all the content of the above folder:

 mkdir /home/script

cp /home/pi/pyTAD-main/scripts/webcam/* /home/script

chmod +x /home/script/*.sh

The crontab is available as one of the files under /home/script. To impose it use the command:
sudo crontab /home/pi/pyTAD-main/scripts/webcam/crontab.txt

6.3 CONNECT THE RPI AND THE ZERO W

In order to allow the Raspberry PI to perform the script ‘scatta.sh’ on the Raspberry Nano, it
is necessary to exchange public and private keys between the two devices so that a ssh
command can be provided to perform the shooting.

To execute a command on Raspberry PI Zero invoked by a script on Raspberry PI B, it is necessary

to allow the authentication from the Raspberry PI B to the Raspberry PI Zero with public-

key/private-key configuration

https://www.raspberrypi.com/documentation/accessories/camera.html

48

 Generate an RSA key pair on the Raspberry PI B with the command

ssh-keygen

Answer questions with all default values

 Check creation of public key:

cat ~/.ssh/id_rsa

 Copy the Public Key to Raspberry PI Zero:

ssh-copy-id pi@192.168.1.X

(where x is the 4th octet of the raspberry PI Zero Address usually .175)

 Connect to the Raspberry PI Zero:

ssh pi@192.168.1.x

 It is also possible to execute a direct command:

ssh pi@192.168.1.x ls (to list the home folder)

 In order to store the fingerprint of the webcam Raspi Zero, it is necessary to launch once

the following command

sudo ssh -i /home/pi/.ssh/id_rsa pi@192.168.1.175 /home/script/scatta.sh

6.4 INSTALL THE VPN

Follow the instructions contained in chapter Error! Reference source not found..

mailto:pi@192.168.1.x
mailto:pi@192.168.1.x

49

7 FIRST SWITCH ON OF AN IDSL

The first time that the device is switched on, a few operations are necessary:

 Check the config.txt file

 Verify that all software is running

 Verify that the sensor is providing data

IVerify that the solar panel is working

7.1 CHECK THE CONFIG FILE

If the c version is used check that a fine config.txt is present in /home/pi/programs/TAD0

If the pyTAD version is used, open the config.txt file, under

/home/pi/programs/pyTAD/progs and verify that the config.txt file is present.

If the RIO version is used, check the Settings.json file in /home/pi/programs/RIO.

In the file is present, verify that the serial port is specified correctly as /dev/ttyAMA0

Check that the software is not in simulated mode, otherwise a constant value is sent to the
server: simSonar=0 for TAD and pyTAD. The RIO version does not allow this mode, since it
has a simulation module for this use.

Adjust the sensorAddFac value to have a reasonable level. However, this value can also be

changed at a later stage if a more precise calibration value is available. The country reference

is often used to align all sensors: use this parameter to achieve that.

7.2 VERIFY THAT THE SOFTWARE IS RUNNING

Verify that the software is running with:

 TAD: ps -efd | grep tad

 pyTAD: ps -efd | grep python

 RIO: ps -efd | grep TAD.Core

7.3 VERIFY THAT THE SENSOR IS PROVIDING DATA

To check that the sensor is providing data, check the log files written in the /tmp folder:

 pyTAD writes in /tmp/pyTAD two files:

AllData… current date….txt and execLog…current date….txt

If they are present, check that they are periodically updated with the command:

tail -f AllData….

tail -f execLog….

 TAD writes in /tmp/TAD the same two files: check with the same commands

 RIO writes a daily log in /tmp/checkLog-{yyyyMMdd}.txt, that can be watched

with the command lr. In the RIO settings, the SaveAllData parameter is used to

template the name of the related file.

50

The AllData file should append data every second or less, while the log according to the time
interval specified (5s by default). If the files are not updated, use the minicom utility and
connect directly to the sensor through the defined serial port. In case data do not arrive
correctly on the serial port, refer to the maintenance document.

7.4 VERIFY THAT THE SOLAR PANEL IS WORKING

When an IDSL is installed for the very first time, it is a good practice to check that the solar
panel is working. In a very rare case it happened that the solar panel cable was disconnected
and it was not charging. The best moment to verify the behaviour of the battery voltage is the
early morning.

From the night to the day the solar panel output increases: this guarantees that the solar panel
is charging the batteries.

For this reason, it is a good practice to remain by the installation site overnight to verify the
correct charging.

51

8 IDSL REMOTE VERIFICATION

The remote verification is very important and allows to verify that everything is working fine
and to prevent problems.

 Verify that the software is running

 Verify that the disk is not full

 Verify that the sensor is providing data

 If the webcam cannot be reached try the switchOffOn command

For these procedure to be performed, it is assumed that a VPN was configured to
communicate with the device.

8.1 VERIFY THAT THE SOFTWARE IS RUNNING

Proceed as described in 7.2.

8.2 VERIFY THAT THE DISK IS NOT FULL

In principle nothing is written on the memory card. It is good practice to check periodically the
amount of the space left on the temporary partition /tmp and on the /home partition using the

command du -h

8.3 VERIFY THAT THE SENSOR IS PROVIDING DATA

If data are not uploaded, perform the same checks of 7.3.

8.4 THE WEBCAM CANNOT BE REACHED

Sometimes the webcam does not connect with the Teltonika router. In order to check, try to
connect from the RPI using ssh to the IP 192.168.1.175. If it cannot be reached, switch the
whole system off and back on by activating the script:

/home/script/switchOffOn.sh

This script will activate the LAN switch that will power off everything, including the RPI and

after 2s will power on the device. Of course, it will not be possible to control the device until it

completes the boot sequence. This procedure is rather invasive and should be limited as

much as possible, because the device is switched off abruptly.

52

9 CONCLUSIONS

The document provides all the elements to perform a safe start-up and verification of an IDSL
system. Several details are specific of the JRC design; but it is easy to adapt them to a
different implementation.

It is better initializing an IDSL system in a laboratory, where the network is more reliable and
it is possible, if needed, to download more software or a new image SD card. Once the
initialization and the testing are completed, the device can be deployed onsite.

Still, using the remote management, it is possible to correct, modify and restart the system if
the VPN is properly established.

53

10 APPENDIX A – BASH COMMANDS ALIAS FOR RIO

The commands to manage the RIO System need to be configured into the /etc/bash.bashrc

file. Edit this file with:

 sudo nano /etc/bash.bashrc

and add the following list of commands alias. Then save and reboot the system.

The list of the command is

Mount filesystem in Read Only

alias ro='sudo mount -o remount,ro / ; sudo mount -o remount,ro /boot'

Mount filesystem in Write

alias rw='sudo mount -o remount,rw / ; sudo mount -o remount,rw /boot'

setup fancy prompt"

PROMPT_COMMAND=set_bash_prompt

Edit bash.bashrc

alias ebashrc='sudo nano /etc/bash.bashrc'

Kill RIO

alias kr='pidof TAD.Core | xargs sudo kill'

Tail Rio Log

alias lr='date +/tmp/checkLog-%Y%m%d.txt | xargs tail -f'

alias egrep='egrep --color=auto'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias ls='ls --color=auto'

Uptime

alias upt='uptime -p'

Edit Rio Settings.json

alias rioset='nano /home/pi/programs/RIO/Settings.json'

Restart Logmein

alias lmrestart='sudo systemctl restart logmein-hamachi'

Check Logmein

alias lmcheck='sudo hamachi'

alias ebashrc='sudo nano /etc/bash.bashrc'

alias riotel='telnet localhost 4005'

(echo ' Currently:' | tr "\n" ' ' ; date +"%Y-%m-%d %k:%M:%S" ; echo

' Up Since:' | tr '\n' ' ' ; uptime -s ; echo ' Duration:' | tr '\n'

' ' ; uptime -p)

Show Banner Alias

alias balias=/etc/update-motd.d/11-banneralias

Edit Banner Alian

alias ebalias='sudo nano /etc/update-motd.d/11-banneralias'

the file /etc/update-motd.d/11-banneralias contain the list of the alias, it is showed at the login
The content of the file /etc/update-motd.d/11-banneralias is
#!/bin/sh

alias ro='sudo mount -o remount,ro / ; sudo mount -o remount,ro

/boot'

alias rw='sudo mount -o remount,rw / ; sudo mount -o remount,rw

/boot'

54

alias kr='pidof TAD.Core | xargs sudo kill'

alias lr='date +/tmp/checkLog-%Y%m%d.txt | xargs tail -f'

alias upt='uptime -p'

alias rioset='nano /home/pi/programs/RIO/Settings.json'

alias riotel='telnet localhost 4005'

alias ebashrc='sudo nano /etc/bash.bashrc'

alias lmrestart='sudo systemctl restart logmein-hamachi'

alias lmcheck='sudo hamachi'

alias balias=/etc/update-motd.d/11-banneralias

alias ebalias='sudo nano /etc/update-motd.d/11-banneralias'

alias ebashrc='sudo nano /etc/bash.bashrc'

green="\e[32m"

reset="\e[39m"

#################

echo "## ALIAS ##" #

#################

echo "${green} # ro : ${reset} To mount filesystem in ReadOnly

Mode"

echo "${green} # rw : ${reset} To mount filesystem in Write Mode"

echo "${green} # upt : ${reset} To display uptime "

echo "${green} # kr : ${reset} To kill RIO program "

echo "${green} # lr : ${reset} To display Current Log of RIO "

echo "${green} # rioset : ${reset} To edit the RIO Settings.json "

echo "${green} # riotel : ${reset} To configure RIO "

echo "${green} # lmrestart ${reset} To restart logmein-hamachi"

echo "${green} # lmcheck : ${reset} To check hamachi"

echo "${green} # ebalias : ${reset} To edit Banner Alias "

echo "${green} # ebashrc : ${reset} To edit bash.bashrc "

echo "###########"

