

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-Hawaii)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS
TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME

7-18 August 2023, Honolulu, Hawaii USA

14.5 Evacuation maps when inundation modeling is not possible or practical Case Study – Caribbean Example

Desireé Bayouth-García

UNESCO/IOC - NOAA International Tsunami Information Center

Introduction

MG-82 Module 1 – Identifying Tsunami Inundation Areas

1
Acquire required information

2
Learn basics of tsunami science and numerical modelling or no modelling

3
Conduct tsunami modelling or no modelling

Map

Methods of determining inundation/flooding extents

- 1. "Bath-tub" line methods
 - Historical records of maximum tsunami run-up at the community level
- 2. Establishing tsunami inundation zone for evacuation mapping and planning in regions without tsunami modeling.
 - National Tsunami Hazard Mitigation Program guidelines
 - Historical inundation information
 - Elevation and distance from the shoreline
 - Tsunami modelling for nearby areas
 - Safety buffers
 - Hurricane storm surge maps and data
 - Strong offshore currents

REFER TOModule 1, p. 14-15

REFER TO 2.3, p. 14-23

MG-82 Module 2 – Developing Tsunami Evacuation Maps

- Use the no modeling inundation result as the preliminary evacuation zone
- Buffer addition? Team decision
 - Following the "bath-tub" approach do not reduce extents to elevations lower than the contour selected
- Follow the remaining evacuation map development steps as you would with a tsunami modeling result polygon
- Non-modeling approach > Conservative evacuation map

Module 1, p. 14-15

REFER TO p. 38 - 51

Tsunami Response Plan and Standard Operating Procedures

Tsunami Response Plan and Standard Operating Procedures

Following the MG-82 guidelines

- Use of GIS tools to support Jamaica's Tsunami Ready recognition
- Event and runup data obtained from
 - NOAAs National Center for Environmental Information (NCEI)
 - International Seismological Center Global Earthquake Model (ISC-GEM) Global Instrumental Earthquake Catalogue
 - 3. United States Geological Survey (USGS) Earthquake Catalogue

Following the MG-82 guidelines

- Local and historical data provided by Jamaica's Office of Disaster Preparedness and Emergency Management (ODPEM)
 - Island's outline
 - Digital elevation model (DEM)
 - Hurricane Allen storm surge data
 - Coastal inundation data
- Establish a nationwide preliminary inundation extent using the provided datasets, GIS software, ArcMap, and consulting ODPEM on specific mapping considerations and parameters
 - 10 m elevation and 1.6 km distance from the shoreline

Jamaica DEM – 10 m contour

sunami Information Center

Trace the file that is first reached from the coastline

sunami Information Center

Trace the file that is first reached from the coastline

Critical Assets at Risk to Tsunamis in Jamaica

Critical assets located within the tsunami inundation extent

Map creation: Anna Tucker-Abrahams Date created: September 27,2021

Data credits: ODPEM Critical assets at risk,

NOAA Tsunami Inundation Extent

- Tsunami inundation extent

Roads

47 schools

23 health centres

12 tourist facilities 133 heritage sites

115 well systems

12 tourist attractions

50 emergency shelters

Office of Disaster Preparedness and **Emergency Management**

Exposed Coastal Population within Tsunami Inundation Extent

	Exposed	
Parish	Population	
	15-64yrs	<15/>64yrs
Clarendon	12,524	9,054
St. Catherine	46,716	26,423
KSA	52,207	35,444
St. Elizabeth	11,362	7,709
St. Ann	24,078	15,647
St. Mary	16,050	14,668
St. James	16,156	9,997
Manchester	1,638	993
Hanover	14,398	9,574
Trelawny	7,601	4,774
Westmoreland	39,015	15,422
Portland	13,390	10,348
St. Thomas	32,341	23217
Total	287,476	183,270

LEGEND

Exposed Population (15—64yrs)

Exposed Population (<15yrs & >64yrs)

Tsunami Inundation Extent

Coastal Inundation Areas
Parish Boundary

Exposed population within the tsunami inundation extent

Map creation: Anna Tucker-Abrahams

Date created: September 27,2021

Data credits: STATIN Census 2011,

NOAA Tsunami Inundation Extent **ODPEM**

Office of Disaster Preparedness and Emergency Management

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-Hawaii)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS
TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME
7-18 August 2023, Honolulu, Hawaii USA

Thank you

Desireé Bayouth-García

UNESCO/IOC - NOAA International Tsunami Information Center

