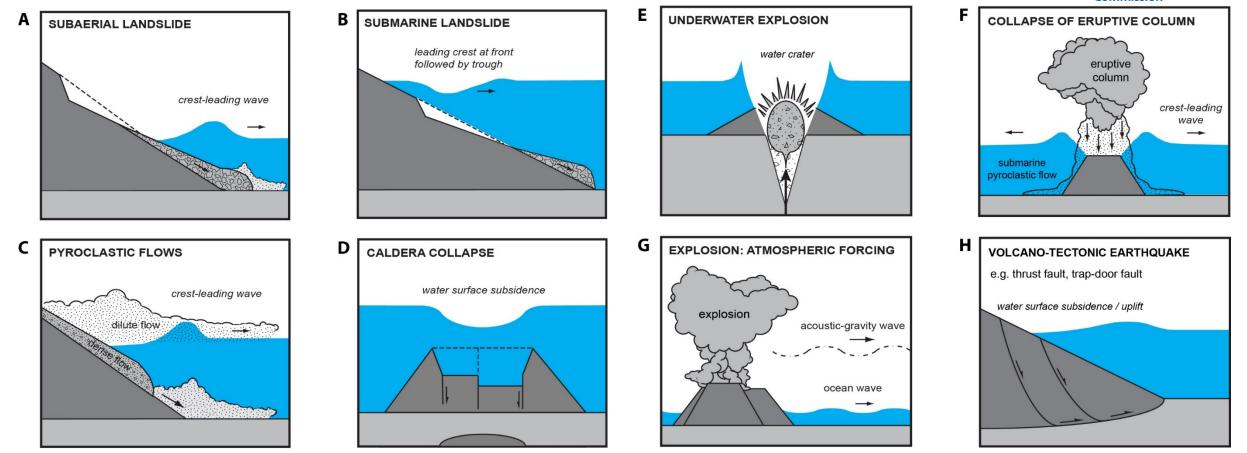
Joint ICG/PTWS - IUGG/JTC Workshop 11^h September, 2023 Nuku'alofa,Tonga

unesco

Intergovernmental Oceanographic Commission Tsunami Generated by Volcanoes (TGV) IOC Report (Feb 2023)

François Schindelé (France)


Chair ad hoc team

Rick Bailey (Unesco/IOC), Laura Kong (USA, ITIC), Emily Lane (New-Zealand), Raphael Paris (France), Maurizio Ripepe (Italy), Vasily Titov (USA)

1 – Tsunamis generated by volcano activity and instability

-> background information on the physical phenomena associated with each identified possible tsunami source in a volcanic setting

-> references on historical and recent case-studies.

Intergovernmental Oceanographic Commission

modified from Paris et al., 2013

unesco

Table 1 – Examples of tsunami generated by volcano flank instability.

unesco

Intergovernmental Oceanographic Commission

Volcano	Location	Year	Landslide volume	Max tsunami runup (dist. from source)	Reference
Anak Krakatau	Sunda Strait, Indonesia	2018	210×10 ⁶ m ³	85 m (4 km)	Muhari et al. (2019), Walter et al. (2019), Borrero et al. (2020), Perttu et al. (2020), Putra et al. (2020), Hunt et al. (2021)
Stromboli	Aeolian Islands, Italy	2002	17×10^{6} m ³ and 5×10^{6} m ³	11 m (1.5 km)	Bonaccorso et al. (2003), Maramai et al. (2005)
Kilauea	Hawaï, USA	1994	~10 ⁵ m³	15 m (50 m)	Mattox and Mangan (1997)
lliwerung	Lembata, Indonesia	1979	50×10 ⁶ m ³	9 m (18 km)	Lassa (2009), Yudhicara et al. (2015)
Ritter Island	Papua New Guinea	1888	5 km³	15 m (9 km)	Johnson (1987), Ward and Day (2003), Kartens et al. (2019)
Unzen- Mayuyama	Kyushu, Japan	1792	340×10 ⁶ m³	57 m (7 km)	Tsuji and Hino (1993), Inoue (2000)
Oshima- Oshima	Japan Sea, Japan	1741	2.4 km ³	13 m (50 km)	Satake & Kato (2001), Satake (2007)

6- Volcanic observatory questionnaire

• Sent to 25 Volcano Observatories (15 countries); 16 responded:

Australia, France, Greece, Iceland, Indonesia, Italy, Japan, Netherlands, New Zealand, Papua New Guinea, Solomon Islands, Spain, USA (Alaska Volcano Obs), Vanuatu, Trinidad & Tobago. DNR: Ecuador, Nicaragua, Philippines, Portugal, Russia, Tonga, USA (Hawaiian Volcano Obs)

- Asked 14 questions and reference papers:
 - Volcano: how many, name, tsunami possible?, discussed and addr volcano tsunami hazard?
 - Monitoring: networks, best way to monitor for early tsunami detection?, tsunami-specific monitoring instr?, implement TGV warning system?, any data shared with TWC / TSP, FDSN/IRIS DMC, any historical TGV?
 - Warning: TGV SOPs?, Any contact with a TWC? Procedures with VAAC?, Submarine Volcano monitoring and alerts?

6- Volcanic observatory questionnaire (Summary)

- TGV tsunami warnings currently follow a '**Detect, then Warn**' procedure on Mission Requires detection and confirmation, and may be too late to be useful unless there are many sensors between the volcano and coastal communities.
- For significant tsunami, eruption or flank collapse needs be 'massive,' but not yet been quantitatively defined.

 Hazard Assessment (eruption history, numerical modelling of historical events or worst- case scenarios) - not been conducted for all potential volcanoes.

6- Volcanic observatory questionnaire (Monitoring)

- Volcano Observatories (VO) monitor seismicity, surface deformation (tilt, movement), and geochemistry as eruption indicators.
- Two types of triggers for tsunami:
 - VAAC notice of activity. VO-VAAC information exchange. Does not include tsunami hazard potential, nor confirm tsunami wave generated. Therefore, it is a **pre-alert tsunami watch**.
 - Wave detection at coastal or in-water sensors. Confirms wave was generated, and if large enough results in Tsunami Warning. Instruments: coastal sea level gauges and in-water pressure sensors (Elastic beacon, DART or DART-like)
- Most VO do not host sea level stations, and thus are not monitoring sea level for tsunamis.

6- Volcanic observatory questionnaire - TGV Procedures - IOC

Oceanographic

• **PTWS HTHH Interim (March 2022).** PTWC messages triggered by near-by gauge (Nuku'alofa, DART). Forecast scaled by 15 Jan 2022 observations.

• CARIBE-EWS testing Volcano Observatory Notice for Tsunami Threat (VONUT) in CARIBEWAVE 2023 (scenario Mt Pelée). Messages by countries and PTWC. Contain Volcanic Activity Summary and closest sea level gauge locations

- 6- Volcanic observatory questionnaire TGV Procedures National
- Stromboli (2018-2019) VO Elastic Beacons in ocean, trigger alerts Civil Protection and sounds sirens
- Anak Krakatau (2019) Indonesia BMKG (NTWC) coastal sea level gauges
- Australia BOM SOPs use VAAC notifications
- US, Hawaii Island PTWC uses TIDS deployed on land. 'Wet sensor' detects tsunami inundation (from any source)
- Japan SOPs in development case-by-case basis

6- Volcanic observatory questionnaire - Warning Arrangements

- Tsunami Warnings usually issued by Tsunami Warning Centres (TWC), which receive real-time sea level data for tsunami monitoring.
 Since most Volcano Observatories (VO) do not have 24x7 operations, they cannot be TWCs.
- To date, **VO mostly have not worked closely with TWCs**. When earthquake, tsunami, volcano monitoring are part of same agency (e.g. New Zealand), TGV SOPs can be coordinated (seamless) to enable efficient warnings. If not, then harder.
- Situation similar for science agencies and universities, who may not be aware of tsunami early warning process and SOPs.
- Only very recently, Stromboli VO been working with Italian NTWC (INGV) for TGV monitoring and warning

Commission

List of 89 potentially tsunamigenic volcanoes established upon precise criteria. (57 in the Pacific Ocean)

- 1. Volcano was active during the XXth or XXIst centuries.
- 2. It belongs to one of the following types of volcanoes:

A- It is a steep-flanked stratovolcano whose main eruptive centre is located less than 7 km from the coast (sea or lake). Typical examples: Stromboli, Soufrière Hills.

B- The volcano belongs to a complex of eruptive centres in a partly submerged caldera. A distinction can be made between caldera lakes (e.g. Taal, Philippines), calderas opened to the sea (e.g. Rabaul, PNG) and submerged calderas with emerged eruptive centres (e.g. Krakatau, Indonesia).

C- It is a submarine volcano with shallow-water vents, whose activity and flank instability are clearly potential sources of tsunamis, as demonstrated by the HTHH eruption in 2022.

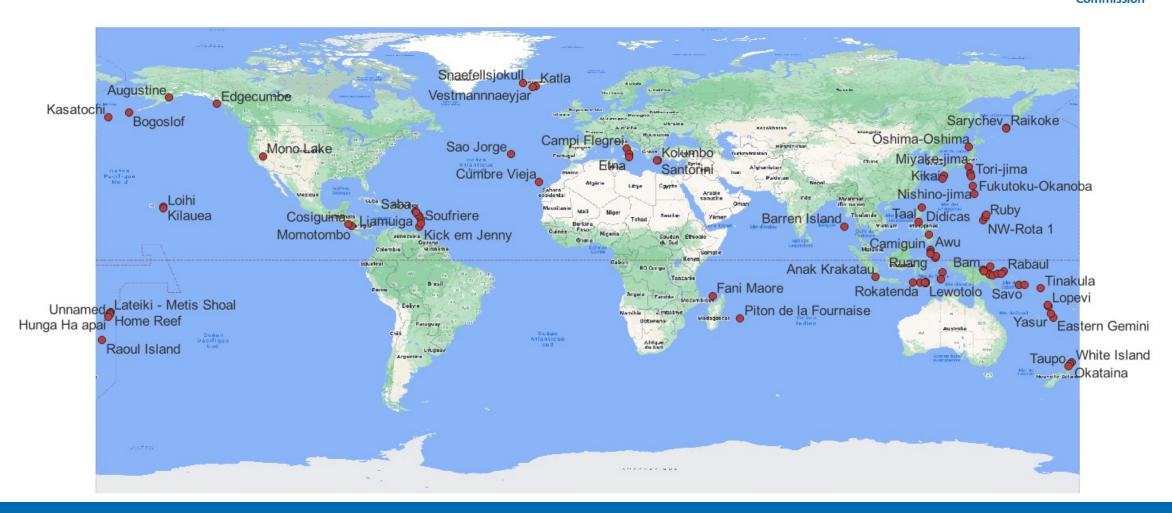
D- It is a shield volcano (ocean island) showing evidence of flank deformation, such as Kilauea volcano in Hawaii, and Piton de la Fournaise in Reunion Island.

3. Additional volcanoes were added to the list, based on suggestions found in the questionnaires sent to volcano observatories.

NAME	COUNTRY	REGION	SUBREGION/ISLAND	BASIN	LONG, LAT (WGS84)	VOLCANO TYPE	DISTANCE / COAST (km	LAST ERUPTION A	P HISTORICAL TSUNAMI
Mount Pelee	FRANCE	WEST INDIES	MARTINIQUE	CARIBBEAN	-61.16488,14.80937	Α	5.6	1932	1902
Soufriere	FRANCE	WEST INDIES	GUADELOUPE	CARIBBEAN	-61.66339,16.04370	Α	8.7	1976	
Fani Maore	FRANCE	COMORES	MAYOTTE	INDIAN	45.62150,-13.17750	С	0	2022	
Piton de la Fournais	FRANCE	REUNION ISLAND	REUNION	INDIAN	55.70796,-21.24286	D	9	2021	
Kolumbo	GREECE	AEGEAN SEA	NE SANTORINI	MEDITERRANEAN	25.48477,36.52648	С	0	1650	1650
Santorini	GREECE	AEGEAN SEA	SANTORINI	MEDITERRANEAN	25.39596,36.40419	В	0.8	1950	
Kick em Jenny	GRENADA	WEST INDIES	NW GRENADA	CARIBBEAN	-61.64121,12.29980	С	0	2017	1939, 1965?
Katla	ICELAND	ICELAND		NE ATLANTIC	-19.05228,63.62868	Α	23.4	1918	1918
/estmannnaeyjar	ICELAND	ICELAND	VESTMANN ISLANDS	NE ATLANTIC	-20.2646,63.4165	С	0	1973	
Snaefellsjokull	ICELAND	ICELAND		NE ATLANTIC	-23.77128,64.80388	A	7.8		1
Barren Island	INDIA	ANDAMA ISLANDS	BARREN ISLAND	INDIAN	93.86073,12.27905	A	1.5	2020	
Anak Krakatau	INDONESIA	JAVA-SUMATRA	SUNDA STRAIT	INDIAN	105.42572,-6.10129	В	0.5	2022	1883, 1928, 1930, 1981, 2018
Banda Api	INDONESIA	BANDA SEA	BANDA		129.88246,-4.52215	A	1.5	1988	
Teon	INDONESIA	BANDA SEA	EAST BEBAR		129.14375,-6.97622	A	1.5	1904	
Batu Tara	INDONESIA	FLORES SEA	КОМВА		123.58594,-7.78829	A	1	2022	
Rokatenda	INDONESIA	FLORES SEA	PALUWEH		121.70869,-8.32135	A	2.3	2013	1928
Sangeang Api	INDONESIA	FLORES SEA	SANGEANG		119.07065,-8.19806	A	5.2	2022	
Gamalama	INDONESIA	MALUKU	GAMALAMA		127.33344,0.80993	A	4.3	2018	
Gamkonora	INDONESIA	MALUKU	HALMAHERA	PACIFIC	127.52982,1.37824	Α	4.8	2007	1673?
liwerung	INDONESIA	NUSA TENGGARA EAST	LEMBATA		123.57291,-8.53105	A	1.5	2021	1973, 1979, 1983
ewotolo	INDONESIA	NUSA TENGGARA EAST	LEMBATA		123.50796,-8.27324	Α	4	2012	
Awu	INDONESIA	SULAWESI	SANGIHE	PACIFIC	125.4496,3.6901	A	5.5	2004	1856, 1892
Karangetang	INDONESIA	SULAWESI	SIAU	PACIFIC	125.40605,2.78095	Α	4	2020	
Ruang	INDONESIA	SULAWESI	RUANG	PACIFIC	125.36997,2.30081	A	1.6	2002	1871
Stromboli	ITALY	AEOLIAN ISLANDS	STROMBOLI	MEDITERRANEAN	15.2120,38.7939	A	1.6	2022	1343, 1879, 1916, 1919, 1930, 19
Vulcano	ITALY	AEOLIAN ISLANDS	VULCANO	MEDITERRANEAN	14.96104,38.40333	В	0.9	1890	1988
Campi Flegrei	ITALY	CAMPANIA		MEDITERRANEAN	14.13877,40.82674	В	0	1538	
Vesuvius	ITALY	CAMPANIA		MEDITERRANEAN	14.42678,40.82131	A	6.4	1944	1631
Etna	ITALY	SICILIA		MEDITERRANEAN	15.00195,37.73129	Α	17	2023	1329
Fukutoku-Okanoba	JAPAN	IZU ISLANDS	N MINAMIIWO	PACIFIC	141.48436,24.27931	С	0	2021	2021
Miyake-jima	JAPAN	IZU ISLANDS	MIYAKE	PACIFIC	139.52650,34.08570	Α	3	2010	
Myojinsho	JAPAN	IZU ISLANDS		PACIFIC		С	0	1970	1953
Nishino-jima	JAPAN	IZU ISLANDS		PACIFIC	140.87387,27.24725	В	0.2	2021	
Sumisu	JAPAN	IZU ISLANDS		PACIFIC	140.05,31.486	с	0	1916	1984, 1996, 2006, 2015, 2018
「ori-jima	JAPAN	IZU ISLANDS	TORI	PACIFIC	140.30291,30.48421	Α	1.1	2002	
, Oshima-Oshima	JAPAN	JAPAN SEA	OSHIMA	PACIFIC	139.36710,41.51003	A	1	1790	1741
(ikai	JAPAN	RYUKYU ISLANDS	IWO-JIMA	PACIFIC	130.30526,30.79310	В	1	2020	
Suwanose-jima	JAPAN	RYUKYU ISLANDS	SUWANOSE	PACIFIC	129.71366,29.63857	A	2.2	2020	
Soufriere Hills	MONTSERRAT	WEST INDIES	MONTSERRAT	CARIBBEAN	-62.17969,16.72027	A	3.2	2013	1997, 1999, 2003, 2006
aba	NETHERLANDS	WEST INDIES	SABA	CARIBBEAN	-63.23923,17.63598	A	1.3	1640	
The Quill	NETHERLANDS	WEST INDIES	ST EUSTATIUS	CARIBBEAN	-62.96368,17.47764	A	1.2		
White Island	NEW ZEALAND	BAY OF PLENTY	WHITE ISLAND	PACIFIC	177.18057,-37.51937	A	0.8	2019	
Raoul Island	NEW ZEALAND	KERMADEC	RAOUL ISLAND	PACIFIC	-177.91931,-29.26417	A	1.6	2006	
Okataina	NEW ZEALAND	NORTH ISLAND		PACIFIC	176.50012,-38.12027	В	0	1981	

unesco

Intergovernmental Oceanographic Commission

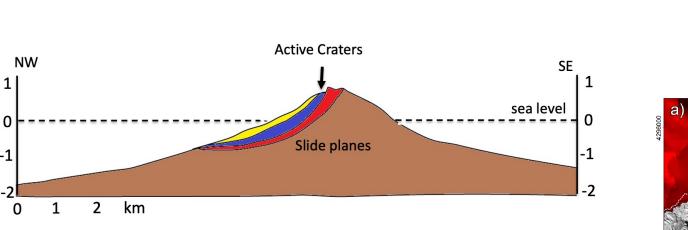

NAME	COUNTRY	REGION	SUBREGION/ISLAND	BASIN	LONG, LAT (WGS84)	VOLCANO TYPE	DISTANCE / COAST (km	LAST ERUPTION Ap	HISTORICAL TSUNAMI
Taupo	NEW ZEALAND	NORTH ISLAND		PACIFIC	175.91988,-38.80097	В	0	260	
Momotombo	NICARAGUA	LAKE MANAGUA		PACIFIC	-86.53808,12.42113	A	3.5	2016	
Cosiguina	NICARAGUA	PACIFIC COAST		PACIFIC	-87.57093,12.98246	Α	6.1	1859	1835?
am	PAPUA - NEW GUINEA	BISMARCK SEA	BAM	PACIFIC	144.81801,-3.61275	A	1.1	1960	
adovar	PAPUA - NEW GUINEA	BISMARCK SEA	KADOVAR	PACIFIC	144.58806,-3.60754	Α	0.5	2020	2018
ong Island	PAPUA - NEW GUINEA	BISMARCK SEA	LONG ISLAND	PACIFIC	147.11783,-5.35215	Α	7	1993	
/lanam	PAPUA - NEW GUINEA	BISMARCK SEA	MANAM	PACIFIC	145.03743,-4.07896	Α	5	2020	
itter Island	PAPUA - NEW GUINEA	BISMARCK SEA	RITTER ISLAND	PACIFIC	148.11472,-5.51957	С	0	2007	1888, 1972, 1974, 2007
akataua	PAPUA - NEW GUINEA	NEW BRITAIN		PACIFIC	150.10607,-5.05447	В	5.5	1895	
abaul	PAPUA - NEW GUINEA	NEW BRITAIN		PACIFIC	152.20300,-4.27081	В	0.6	2014	1878, 1937, 1994
uluman	PAPUA - NEW GUINEA	NEW BRITAIN	SOUTH MANUS	PACIFIC	147.30293,-2.45519	с	0	1957	
llawun	PAPUA - NEW GUINEA	NEW BRITAIN		PACIFIC	151.32889,-5.05038	A	10.5	2022	
idicas	PHILIPPINES	BABUYAN ISLANDS	NE CAMIGUIN	PACIFIC	122.20254,19.07709	В	0.2	1978	1969?
amiguin	PHILIPPINES	BOHOL SEA	CAMIGUIN	PACIFIC	124.7201,9.1754	В	4	1953	1871
aal	PHILIPPINES	LUZON		PACIFIC	120.9930,14.0070	В	2.2	2021	1716, 1749, 1754, 1911, 1965
ao Jorge	PORTUGAL	AZORES ISLANDS	SAO JORGE	ATLANTIC	-28.07764,38.65153	D	1.5	1902	
aikoke	RUSSIA	KURIL ISLANDS	RAIKOKE	PACIFIC	153.24978,48.29220	A	0.7	2019	
arychev	RUSSIA	KURIL ISLANDS	SARYCHEV	PACIFIC	153.20003,48.09158	A	2.8	2021	
inakula	SOLOMON ISLANDS	EAST SOLOMON	TINAKULA	PACIFIC	165.80392,-10.38640	A	1.1	2020	1897, 1966
avachi	SOLOMON ISLANDS	WEST SOLOMON	SOUTH VANGUNU	PACIFIC	157.97888,-8.99099	с	0	2021	1951
avo	SOLOMON ISLANDS	WEST SOLOMON	NORTH GUADALCANA	PACIFIC	159.80749,-9.13400	A	2.3	1847?	
umbre Vieja	SPAIN	CANARY ISLANDS	LA PALMA	ATLANTIC	-17.83715,28.56832	D	1.2	2021	
iamuiga	ST KITTS & NEVIS	WEST INDIES	ST KITTS	CARIBBEAN	-62.80896,17.37007	Α	4.4	1843?	
oufriere	ST VINCENT	WEST INDIES	ST VINCENT	CARIBBEAN	-61.18092,13.33104	A	3.5	2020	1902, 2020
lome Reef	TONGA	TONGA	WEST NEIAFU	PACIFIC	-174.77517,-18.99183	с	0	2006	
lunga Ha apai	TONGA	TONGA		PACIFIC	-175.39068,-20.54491	В	0.1	2022	2015, 2021, 2022
ateiki - Metis Shoal		TONGA	WEST NEIAFU	PACIFIC	-174.86999,-19.18002	c	0	2019	,,
ofua	TONGA	TONGA	TOFUA	PACIFIC	-175.07002,-19.75023	A	3	2014	1892
Innamed	TONGA	TONGA	WEST TONGATAPU	PACIFIC	-175.55041,-20.85174	C	0	2017	
ugustine	USA	ALASKA	AUGUSTINE	PACIFIC	-153.43023,59.36302	A	4	2006	1883
logoslof	USA	ALEUTIAN ISLANDS	BOGOSLOF	PACIFIC	-168.03530,53.93010	A	0.2	2017	
asatochi	USA	ALEUTIAN ISLANDS	KASATOCHI	PACIFIC	-175.50881,52.17454	A	0.4	2008	2008
Iono Lake	USA	CALIFORNIA		PACIFIC	-119.02835,38.00242	В	0.6	1790	
ilauea	USA	HAWAII	BIG ISLAND	PACIFIC	-155.2889,19.4202	D	14	2022	1975
oihi	USA	HAWAII	SOUTH BIG ISLAND	PACIFIC	-155.2681,18.9262	D	0	1996	
natahan	USA	MARIANA ISLANDS	ANATAHAN	PACIFIC	145.67389,16.35038	A	1.5	2008	
IW-Rota 1	USA	MARIANA ISLANDS	WEST SINAPALU	PACIFIC	144.77496,14.60064	c	0	2010	
uby	USA	MARIANA ISLANDS	NORTH SAIPAN	PACIFIC	145.56974,15.61975	c	0	1995	
outh Sarigan	USA	MARIANA ISLANDS	SARIGAN	PACIFIC	145.77989,16.57998	c	0	2010	2010
dgecumbe	USA	ALASKA	EASTERN ALASKA	PACIFIC	-135.75289,57.05220	A	5.1	2080 BCE	-
ast Epi	VANUATU	VANUATU	EAST EPI	PACIFIC	168.37002,-16.68009	c	0	2023	
astern Gemini	VANUATU	VANUATU	SOUTH ANATOM	PACIFIC	170.28844,-20.98807	c	0	1996	
(uwae	VANUATU	VANUATU	SOUTH EPI	PACIFIC	168.53500,-16.83028	c	0	1974	
Lopevi	VANUATU	VANUATU	SE AMBRYM	PACIFIC	168.34504,-16.50700	A	2.2	2007	

unesco

Intergovernmental Oceanographic Commission

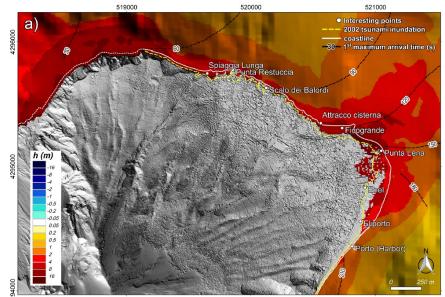
2 – Numerical modeling of volcanic tsunamis

- 1. General consideration of model applications for volcanic tsunamis
 - Complex sources (different fluids, fast processes, phase-shifts) = sophisticated models = high computational cost
 - Shorter wave length compared to earthquake-induced tsunamis -> faster attenuation -> local tsunamis
 - Short time to forecast -> real-time applications are thus challenging
 - How far can we go in the approximation in order to save time?
- 2. Tsunami generation and initialization modeling: the most challenging phase
 - Instantaneous initialization : tsunami happens rapidly compared to the shallow water wave speed E.g. underwater explosions, volcano tectonic earthquake
 - □ Finite time initialization : forcing happens over a specified time at the start of the modelling
 - Ground deformation : sea floor motion as a forcing term. E.g. submarine landslide, caldera collapse.
 - Multi-layer models : all fluids are modelled as separated layers + interactions. E.g. subaerial landslides, pyroclastic flows.
 - Ongoing forcing by a pressure anomaly, such as Lamb waves produced by *large explosions in the atmosphere*.
- 3. Tsunami propagation modeling


Most propagation models are suitable, but dispersive effects are important -> Boussinesq approximation often required.

4. Tsunami inundation modeling

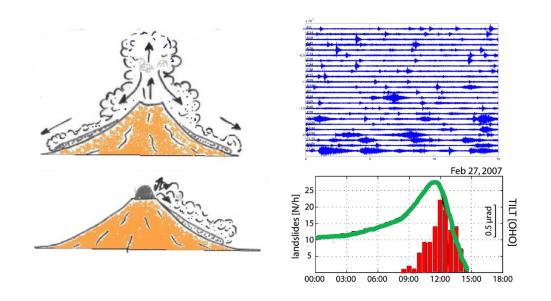
Similar to any long wave inundation, but distribution of wave runups is similar to landslide (local) tsunamis (except HTHH-type)



3 – Volcanic tsunami hazard assessment (Stromboli)

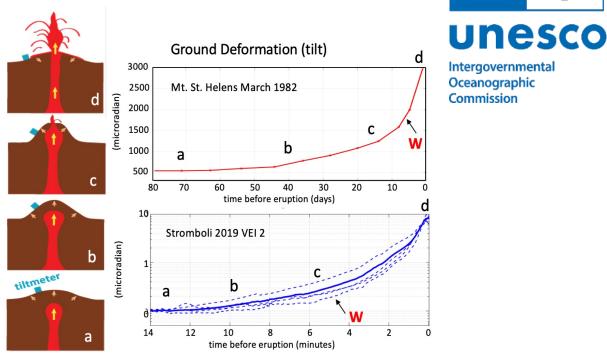
Position of the sliding planes of the 3 main collapses on Stromboli (from Tibaldi , 2001).

Elevation (km)


unesco

Intergovernmental Oceanographic

Commission


Observed and simulated tsunami wave heights (December 2002) and runups on Stromboli (Fornaciai , 2019).

4 – Volcano monitoring requirements for tsunami warning


Collapse of the eruptive plume and/or crater rim/dome generates pyroclastic flows and rock avalanches along the steep volcano slope (from Francis, 1993).

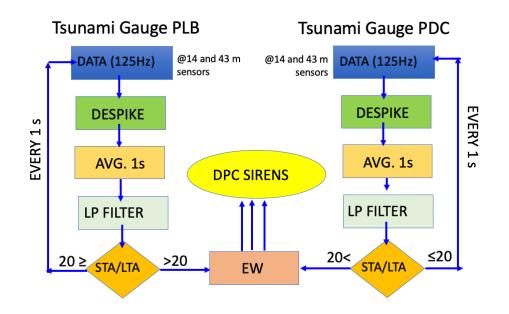
Magma intrusion inflates the volcano edifice (green line in D) which makes the flank unstable, generating rockfalls and pyroclastic flows. Tilt amplitude recorded by the radial component of tiltmeter (green line) and number of rockfalls per hour as recorded by seismic station (from Marchetti et al.,2009).

Before explosive eruptions, upward magma migration progressively inflates the ground. This inflation could be used to deliver a warning days or minutes before eruption. Inflation at Mt. St. Helens (upper panel) started several days before the 19 March 1982 eruption and allowed a warning (W) to be given a few days before the explosion (from USGS report). At Stromboli, ground inflation follows a regular pattern which is used to automatically issue alerts 4-5 minutes before violent explosive events (Ripepe et al., 2021).

5– Volcanic tsunami warning system (Stromboli)

Schematic technical illustration of the main components of the elastic beacon. *Position of the 2 elastic beacons (PLB and PDC)*

Intergovernmental Oceanographic Commission ALERT 0.5 15:18:35 a) height (m) PDC PLB 15:17 15:18 15:19 15:20 15:21 15:22 15:23 15:24 40 b) PDC PLB EW threshold 15:19:25 15:21 15:17 15:18 15:19 15:20 15:22 15:23 15:24 time (hh:mm)


unesco

The tsunami record generated by the impact of the a) pyroclastic density current occurred at Stromboli on December 4, 2022 and recorded at the two elastic beacons (PDC and PLB).

STA/LTA

The STA/LTA ratio increased above the fixed warning b) threshold.

5- Volcanic tsunami warning system (Stromboli)

unesco

Intergovernmental Oceanographic Commission

. Sequence of frames of the December 4, 2022, pyroclastic flow which moving downslope the generated a small tsunami visible in the lower right corner of each frame.

Chart flow of the automatic tsunami detection algorithm operating at Stromboli

. Tsunami signage at Stromboli indicating

a) the limit of the Tsunami Hazard zone,

2021).

- b) the direction of the safer "Escape route"
- c) the direction to waiting areas (from Bonilauri et al.,

unesco

Intergovernmental Oceanographic Commission

Thank you very much for your kind attention.