

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS

TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME

19-30 August 2024. Valoaraiso. Chile

TWC Operations: Travel Time and Amplitude Forecasting – Methods, Limitations, Uncertainty, Sensitivity Studies (Location, Depth, Magnitude)

Mauricio Fuentes S.

Programa de Riesgo Sísmico, Universidad de Chile

Outline

Quick Review of Essentials

The Travel Time Problem

Amplitude Forecasting

Tsunamis are primarily "long waves". The term "long" refers to the fact that, in open waters, **tsunami waves** have lengths several times larger than water depth.

Long wave approximation

 $\lambda \gg h$

International Tsunami Information Cer

These waves travel depending on the water depth. The surface that defines these depths is called **Bathymetry** and is one of the main inputs for tsunami modeling.

Each cell is linked to a geographical coordinate and a depth/height.

1,2	-6	-5,5	-4	-4,1	-6
2,3	.0,2	-1,2	-2,0	-2,4	-3,1
3,2	3,8	2,4	0,2	0,5	1,1
4,5	6,8	4,1	5,5	9,4	15

The sign change defines the shoreline

International Tsunami Information Center

So, tsunami waves travel on a bathymetry... at what velocity? It depends on the wave frequency.

As any wave, tsunamis can be decomposed in different frequencies (Fourier Transform)

In the long wave predominance, $kh \ll 1$, $C_{ph} = C_g = \sqrt{gh}$

For h = 4 and h = 5 km, the speed is around **713 and 800 km/h**

In fact, the situation is somewhat more complicated.

Other effects may induce change in the wave travel. Let's see one example

Crossing a perfectly rigid bridge

$T_r = \frac{L}{v_o}$

$$T_r = \frac{L}{v_e}$$

UNESCO/IOC-NOAA SHOA

Crossing an elastic bridge

$$T_{nr} = \frac{L + \Delta L}{v_e} = T_r + \Delta T$$

In fact, the situation is somewhat more complicated.

Other effects may induce change in the wave travel. Let's see one example In a similar way, different wavelengths respond differently to the elastic properties of the seafloor.

The Travel Time Problem

The Travel Time Problem

- Source Observer Problem
- Common Methods
 - □ The TTT (*Tsunami Travel Time*): Huygen's Principle
 - Ray Tracing
 - □ Direct Tsunami Propagation Solvers

We compute the three posible time increments. We take the minimum!

$$\Delta T_{A,B} = \frac{\Delta s}{v_0}$$

t_1^1	t_{1}^{2}	
0	t_{1}^{3}	
t_{1}^{5}	t_1^4	

t_2^1	t_2^2	t_2^3	
t_1^1	t_1^2	t_2^4	
0	$t_1^3 -$	t_2^5	
t_{1}^{5}	t_1^4	t_2^6	

Let's say that t_1^3 produces the minimum time increment, then

$$t_2^5 = t_1^3 + \Delta T_{A,B}$$

Conect points with the same time (isochrones)

Apply it to real bathymetry

UNESCO/IOC-NOAA SHOA
International Tsunami Information Cente

- Sensitive to bathymetry data
- Requires high computer power
- Needs high optimization to reduce computation times
- Do not consider wave frequencies nor second order effects
- Has relatively high uncertainty for far field arrival times

Ray Tracing

Eikonal Equations for Tsunami rays

 θ : colatitude

 ϕ : longitude

R: Earth Radius (6371 km)

C: Phase Velocity

$$\frac{\mathrm{d}\theta}{\mathrm{d}s} = \frac{1}{R}\cos(\zeta)$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}s} = \frac{1}{R} \frac{\sin(\zeta)}{\sin(\theta)}$$

$$\frac{\mathrm{d}\zeta}{\mathrm{d}s} = \frac{\sin(\zeta)}{R} \frac{1}{C} \frac{\partial C}{\partial \theta} - \frac{\cos(\zeta)}{R \sin(\theta)} \frac{1}{C} \frac{\partial C}{\partial \phi} - \frac{\sin(\zeta)\cot(\theta)}{R}$$

$$ds = C \times dt$$

Ray Tracing

Again, connect ray points at equal times: this will produce Isochrones of the wavefront

International Tsunami Information Center

Ray Tracing

- Sensitive to bathymetry data
- Requires high computer power
- It could need an excessive number of rays to cover the whole bathymetry, making the process slow.
- Has relatively high uncertainty for far field arrival times

Tsunami Propagation

There are plenty of Tsunami Solvers out there, most of them are based on a version of the Non-Linear Shallow Water Equations (NLSWE), treated in finite difference schemes.

Arrival time is defined at every point amplitude exceeds a preset threshold (let's say 1 cm).

Tsunami Propagation

Hypothetical source in the Nankai Trough

JNESCO/IOC-NOAA SHOA nternational Tsunami Information Cente

Tsunami Propagation

- Sensitive to bathymetry data
- Requires high computer power
- Sensitive to the source determination
- May vary from different numerical models

Tsunamis are recorded by **Tsunamimeters.**

In open waters, the waves have essentially linear behavior, and those records can be employed for an **inversion process**.

UNESCO/IOC-NOAA SHOA International Tsunami Information Center

Predefined source candidates are set and then, selected and weighted according the data retrieved from the DART buoys.

Once the possible source is reconstructed, a forward model is run.

Evidently, this only has sense for communities where the waves have not yet arrived after the whole has finished.

Far Field!

- Sensitive to bathymetry data
- Sensitive to data acquiring
- Not useful for tsunami early warning in the Near Field case
- Specific Tsunami Inundation Models depend on data that may not exist, and highly computational expensive.

There are infinitely many valid sources and it's not possible to perform (yet) to a reliable inversion and predict amplitudes before the tsunami impact.

Then, how we tackle the Early Warning Problem in the Near Field?

Soon, in a talk, this Will be discussed;)

International Tsunami Information Center

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile)

TSUNAMI EARLY WARNING SYSTEMS

AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS

TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME

19-30 August 2024, Valparaiso, Chile

Thank You

Mauricio Fuentes S. Programa de Riesgo Sísmico, Universidad de Chile

