
TROPICAL CYCLONE EXEMPLAR

- Co-Designing Ocean Observing Systems for Improving Tropical Cyclone Forecasts and Warnings -

Scott Glenn¹ (glenn@marine.rutgers.edu); Cheyenne Stienbarger² (cheyenne.stienbarger@noaa.gov)

¹Rutgers University, Center for Ocean Observing Leadership | ²NOAA's Global Ocean Monitoring and Observing Program

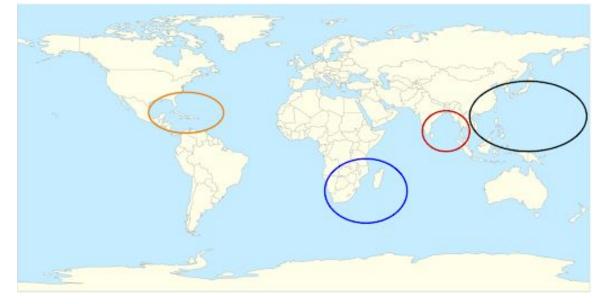
- **Tropical Cyclones** (TCs) are among the most dangerous and destructive weather events worldwide, annually impacting >20M people with >\$50B in losses^{1,2}
- TC impacts are amplified by **rising sea levels, warming oceans,** and **heavier** rainfall, disportionately affecting small developing states
- Improved TC forecasts and warnings will save lives & property, and promote equity & resiliency, across the globe
- Modern Earth System forecast models require more ocean data, especially subsurface, to help improve forecast accuracy and extend forecast lead times

Deliverables:		Involvement:
 Co-designed, regionally distributed ocea collaborative capacity and demonstrate Increased coverage and delivery of oce scientists - to expand critical observation More accurate characterization & under air-sea processes - to improve Earth Syst 	e mutual value ean data to forecasting centers and ns across international borders ³ erstanding of essential ocean features &	 International Steering Committee GOOS Observing Systems & Regional Alliances WMO Tropical Cyclone Programme & Regions Initial Government & Foundation support
Stakeholder Benefits:	Emergency Managers	Forecast Centers
 Improved representation of the Essential Ocean Features impacting TC track, intensity, size 	 Require accurate forecasts with longer lead times to make succe decisions such as evacuate vs. 	Require improved numerical model guidance to issue the most effective forecasts and warnings.

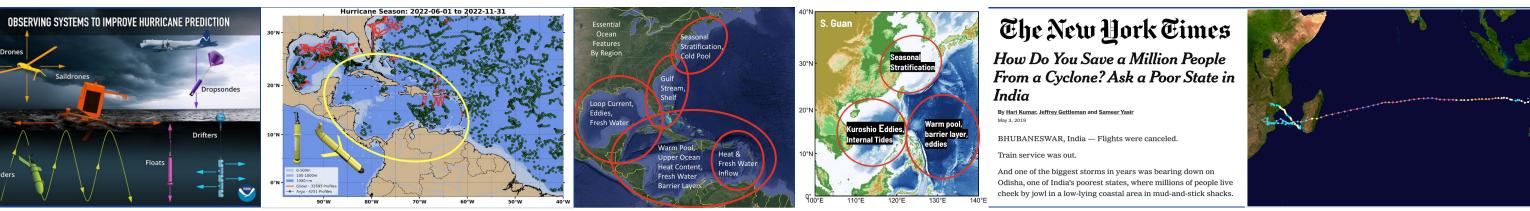
- and storm surge forecasts in Earth System Models
- Improved understanding of **Essential Ocean Processes** impacting TC evolution in Earth System Models
- Improved TC forecasts & warnings
- Improved lead times for emergency managers to coordinate response.

shelter in place. **Modeling Centers**

 Require atmospheric and ocean data for assimilation in Earth system


models. Ocean data limited.

Observing Systems Operators


 Require permissions to collect data in regions that cross national jurisdictions³.

Next Steps:

- Coordinate with regional GOOS Alliances & WMO Regions
- Fundraising for pilot study demonstration projects
 - TAC: Ocean Observing capacity building for most damaging TCs
 - SWIO: Observing network design for TC, BC, MHW triple threat
 - Bay of Bengal: Network expansion for the most deadly TCs
 - NPOMS: Coupled air-sea science for the most intense TCs
- Implementation of regional plans; results shared globally

Four Pilot Study Regions identified: Tropical Americas and Caribbean (TAC), South West Indian Ocean (SWIO), Indian Ocean - Bay of Bengal, North Pacific Ocean and Marginal Seas (NPOMS)

References:

Krichene, H., Vogt, T., Piontek, F. et al. The social costs of tropical cyclones. Nat Commun 14, 7294 (2023). https://doi.org/10.1038/s41467-023-43114-4 | 2WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2019), WMO-No. 1267 | ³Ocean Observations in areas under National Jurisdiction (OONJ) GOOS Expert Meeting Report (2020), GOOS-246