

OVERVIEW OF TSUNAMIS FROM DIFFERENT SOURCES IN HELENIC ARC AND EASTERN MEDITERRANEAN

Ahmet Cevdet Yalçıner^a and Gözde Güney Doğan^{a,b}

^a Middle East Technical University, Department of Civil Engineering, Türkiye
 ^b Delft University of Technology, Hydraulic Engineering Department, Netherlands

March 18, 2025

UNESCO-IOC Expert Meeting on Tsunami Sources Associated with Hellenic Arc and Azores–Gibraltar Fault Zone in the North-Eastern Atlantic, the Mediterranean, and Connected Seas (NEAM) Region, 18-20 March 2025

Dogan et al. EGU2023

Compiled Earthquake Catalogue

- Danciu et al. (2021) for 1000-2014
- EPICA (European PreInstrumental Earthquake Catalogue, Rovida&Antonucci, 2021) for 1000-1899
- EMEC (European-Mediterranean Earthquake Catalogue, Grünthal& Wahlström, 2012; Danciu et al. 2021) for 1900-2014
- ISC (International Seismological Centre) for 2014-2020

M>6 earthquakes in the Aegean

Dogan et al. EGU2023

Focal Mechanisms

Deep earthquakes (d \ge 70 km)

ISC Catalogue; Hayes et al. 2018

Shallow earthquakes (d < 70 km)

Dogan et al. EGU2023

4

Tectonic maps in the Aegean showing the tsunamigenic faults and associated

Maximum earthquake magnitudes (Mmax)

slip rates & fault types

Dogan et al. EGU2023

TSUNAMIGENIC SEISMIC ZONES IN EASTERN MEDITERRANEAN

6

TSUNAMIGENIC SEISMIC ZONES IN EASTERN MEDITERRANEAN

7

TSUNAMIGENIC SEISMIC ZONES IN EASTERN MEDITERRANEAN

Distribution of earthquake epicenters between 1900-2015

Ellipses show the Locations of Critical Tsunami Scenarios (Black dots represent earthquakes with magnitude between 4 and 6; Red Stars indicate earthquakes with the magnitude of greater than 6).

INITIAL SEA STATES FOR SOME OF THE CONSIDERED SOURCES IN SOUTHERN ANATOLIA-EASTERN MEDITERRANEAN

32.5 33 33.5 34 34.5 35 35.5 36

01-365

Epicenter	Lenght of Fault (km)	Strike angle (° W)	Width of fault (km)	Focal Depth (km)	Dip angle (°)	Slip angle (°)	Displacement (km)	Height of initial wave (m)	Maximum positive amplitude (m)	Minimum negative amplitude (m)
23.45E 35.3N	100	315	90	25	30	90	20	9.07	8.2	-0.9

02-Z13-2

	Lenght	Strike	Width of	Focal	Din	Slip	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		onglo (°)	Usplacement (km)	initial wave	positive	negative
	(km)	(° W)		(km)	aligie ()	angle ()	(KIII)	(m)	amplitude (m)	amplitude (m)
23.5E	140	100	35	40	30	00	6	1 / 8	13	-0.2
35.2N	140	100	- 55	40		90	0	1.40	1.5	-0.2

03-Z13-1

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp anglo (°)		initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
25.1E	140	80	35	40	30	90	6	1 / 8	13	-0.2
35.05N	140	00	- 55	40	50	30	0	1.40	1.5	-0.2

04-Z26-1

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth			Usplacement (km)	initial wave	positive	negative
	(km)	(° W)	iauli (KIII)	(km)	aligie ()	aligie ()	(KIII)	(m)	amplitude (m)	amplitude (m)
26.6E	120	50	35	40	30	00	6	1 /3	13	-0.2
35.2N	120	50		40		30	0	1.40	1.5	-0.2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp anglo (°)	Usplacement (km)	initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
27.5E	140	40	40	50	20	00	6	1 21	1 0	0.2
35.8N	140	40	40	50	50	90	0	1.31	1.2	-0.2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth	onglo (°)		Usplacement (km)	initial wave	positive	negative
	(km)	(° W)	iauli (KIII)	(km)	aligie ()	aligie ()	(KIII)	(m)	amplitude (m)	amplitude (m)
27.78E	136	60	40	40	15	15	6	1 20	1 1	-0.2
34.2N	130	00	40	40	40	40	0	1.20	1.1	-0.2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp	Displacement (km)	initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
28.48E	121 5	60	40	40	15	15	6	1 1 8	1 1	-0.2
35.16N	121.5	00	40	40	40	40	0	1.10	1.1	-0.2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp anglo (°)		initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
28.462E	126	204	63	75	27	00	3 65	1.06	1 0	-0.2
36.447N	120	294	03	7.5	21	99	3.05	1.90	1.9	-0.2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth			Displacement (km)	initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
28.434E	100	18/	50	75	17	262	2.0	1 66	0.2	-15
36.077N	100	104	50	7.5	47	202	2.9	1.00	0.2	-1.5

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth				initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(KIII)	(m)	amplitude (m)	amplitude (m)
28.393E	01	303	15	75	25	00	27	1 5 4	1 3	-0.3
35.821N	31	303	43	7.5	20	30	2.1	1.54	1.5	-0.5

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth				initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
28.4E	100	55	00	75	20	00	Б	2.06	2.4	0.7
35.5N	190	55	90	7.5	20	90	5	5.00	2.4	-0.7

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp	Usplacement	initial wave	positive	negative
	(km)	(° W)	Tault (KIII)	(km)	angle ()	angle ()	(КП)	(m)	amplitude (m)	amplitude (m)
34.41E	106	15	40	40	15	15	6	1 1 /	1.0	-0.2
36.13N	100	45	40	40	40	45	0	1.14	1.0	-0.2

13-Z32

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth				initial wave	positive	negative
	(km)	(° W)	iault (km)	(km)	angle ()	angle ()	(KIII)	(m)	amplitude (m)	amplitude (m)
32.1E	156	305	40	20	15	15	6	1.8/	16	-0.2
35.4N	130	303	40	20	40	40	0	1.04	1.0	-0.2

14-Z30

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth			Usplacement (km)	initial wave	positive	negative
	(km)	(° W)		(km)		angle ()		(m)	amplitude (m)	amplitude (m)
32.98E	140	330	40	40	15	15	6	1 21	1 1	0.2
33.83N	149	330	40	40	40	45	0	1.21	1.1	-0.2

15-Z31-2

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth			Usplacement (km)	initial wave	positive	negative
(*	(km)	(° W)	iault (km)	(km)	angle ()	angle ()	(KIII)	(m)	amplitude (m)	amplitude (m)
33.09E	73	60	40	40	15	15	6	1 00	0.0	-0.1
34.33N	13	00	40	40	40	40	0	1.00	0.9	-0.1

16-Z31-1

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth		Silp	Uisplacement (km)	initial wave	positive	negative
	(km)	(° W)	iauit (km)	(km)	angle ()	angle ()	(KIII)	(m)	amplitude (m)	amplitude (m)
33.79E	137	60	40	40	15	15	6	1 20	1 1	-0.2
34.68N	137	00	40	40	40	40	0	1.20	1.1	-0.2

17-Z41

	Lenght	Strike	Width of	Focal	Din	Slin	Displacement	Height of	Maximum	Minimum
Epicenter	of Fault	angle	foult (km)	Depth			Uispiacement (km)	initial wave	positive	negative
	(km)	(° W)	iault (km)	(km)	angle ()	angle ()		(m)	amplitude (m)	amplitude (m)
35.7E	175	60	40	40	45	45	6	1.06	1.0	-0.1
35.07N										

Example tsunami generation and propagation on Misis Kyrenia Fault

May 1202 Tsunami

Characteristics of 2025 Aegean Sea Earthquake Swarm & Potential Tsunami Scenarios

Ahmet Cevdet Yalçıner^a, Gözde Güney Doğan^{a,b}, Setenay Özaslan^a, Bilge Karakütük^a, Arda Özacar^c

^a Middle East Technical University, Civil Engineering Department, Türkiye
 ^b Delft University of Technology, Hydraulic Engineering Department, Netherlands
 ^c Middle East Technical University, Geological Engineering Department, Türkiye

Active Tectonic Setting of Aegean Region

Probabilistic Tsunami Analysis of Aegean Region: Fault Sources

TÜBİTAK project (2021-2025) No: 121M750

Tsunamigenic faults in Aegean are compiled from Basilli et al. (2013)

Tsunami scenarios for $M \ge 6$ events on all tsunamigenic faults with up to 50% spatial overlap are generated (> 10K scenarios)

(Note that for subduction: $M \ge 6.5$)

Early 2025 Aegean Earthquake Storm

Frequency and magnitudes of earthquakes rapidly increased and produced several M>5 earthquakes.

After several weeks, earthquake magnitudes begun to decrease.

1956 Amorgos Earthquake & Observed Tsunami

Amorgos island shelf

500 m

SW

SE->

SE→

SE-

330 340 350 Easting (km) 380 390

Minoan Eruption of Santorini, Submarine Landslides & Tsunami

Summary of available Information on 1956 Amorgos Tsunami

July 9, 1956, Offshore Earthquake 36.69° N, 25.92° E

Amorgos-Astypalaea Island (South Aegean)

> Epicenter Intensity (IO): IX; Magnitude (Ms): 6.8; Tsunami Intensity (TI1): Amargos 6, Astypalaea 6

Water Level Rise (Wr): Amorgos 30m, Astypalaea 20m, Pholegandros 10m, Patmos 4m, Kalimnos 3.6m, Crete 3m, Tinos 3m, Fethiye 1m

Large waves have submerged fields on the islands. In Fethiye, the sea rose 1 m and a flood distance of 250 m was recorded; in Amargos, the submersion distance was observed to be 80–100m, in Astypalaea 400m, in Pholegandros 8m, and in Tinos 700m.

It is believed to be associated with two shocks that occurred at 03:12 and 05:24.

CIVIL. ENG. TARIK ERAY ÇAKIR

PROF. DR. AHMET CEVDET YALÇINER, ODTÜ

STUDY ON MEASUREMENT OF WAVE RISE HEIGHT ON THE COAST ACCORDING TO HIGHLY RELIABLE WITNESSES' NARRATIVES IN 2004

STUDY ON MEASUREMENT OF MAXIMUM WATER ELEVATIONS AT THE COAST ACCORDING TO HIGHLY RELIABLE WITNESSES' NARRATIVES DUE ON 2004

Okal, E., Synolakis, C., Uslu, B., Kalligeris, N., Voukouvalas, E., 2009. The 1956 earthquake and tsunami in Amorgos. Greece. Geophys. J. Int. 178, 1533–1554.

2025 Earthquake Swarm & Potential Tsunami Scenarios

- January February 2025: Ongoing seismic activity prompts alert status and raises concerns about potential tsunami impact in the region → further investigation needed.
- Available information regarding potential tsunami scenarios is examined and scenarios developed.
- Bathymetric/topographic database: Compilation of local available datasets & EMODnet (115 m resolution) and ASTER (30 m resolution) data sets.
- Tsunami modeling using NAMI DANCE
- SHOD and HGM Türkiye

4700

Depth

(m)

2025 Earthquake Swarm & Potential Tsunami Scenarios

Table 1: Summary of Selected Tsunami Scenarios

Scenario	Description								
Scenario 1	1956 Amorgos earthquake and tsunami event (Past-event)								
Scenario 2	Potential Anafi-Amorgos earthquake and tsunami (Dr. Arda Ozacar)								
Scenario 3	Potential Landslide on Outer Slopes of Santorini Island								
Scenario 4	Late Bronze Age Eruption and Caldera Collapse of Santorini Island (Past-event)								
Scenario 5	 Potential Kolumbo Submarine Volcano Explosion (Ulvrova et al. 2016) Explosive Energy: 3*10^14 – 5.4*10^16 Joules Water depth: 20-150 meters (average 80m). (Crater diameter: 3km) Scenario 5a: Explosive Energy: 3*10^14 Joules Scenario 5b: Explosive Energy: 5*10^15 Joules 								
	Scenario 5c: Explosive Energy: 5.4*10^16 Joules								

Scenario 1: 1956 Amorgos earthquake and tsunami event (Past-event)

Initial sea surface displacement

Distribution of maximum sea level computed during 6-hour simulation

Water

Scenario Simulations and Results

Scenario 2: Possible Anafi-Amorgos earthquake and tsunami event (Dr. Arda Özacar)

Initial sea surface displacement

Distribution of maximum sea level computed during 6-hour simulation

Scenario 3: Possible Submarine Landslide on the Outer Slopes of Santorini Island

during 6-hour simulation

Scenario 4: Santorini Island Late Bronze Age Eruption (Past-event)

Initial sea surface displacement

Distribution of maximum sea level computed during 6-hour simulation

Scenario 5a: Possible Columbo Undersea Volcano Eruption Explosion Energy: 3*10^14 Joules

20

Ē

60

Distribution of maximum sea level computed during 6-hour simulation

36-

Distribution of maximum sea level computed during 6-hour simulation

1.4

Maximum Water Elevation Distribution along Bodrum Peninsula computed from 1956 Amorgos Tsunami Simulation

2.4

54

Scenario 1: Tsunami propagation due to the 1956 Amorgos earthquake

https://drive.google.com/file/d/1wjMObvTzxQOunDwVEzx0GU3y06HdFVKn/view?usp=sharing

Scenario 5: Possible Kolumbo Submarine Volcano Eruption (Ulvrova et al. 2016) Explosion Energy: 10^14, 10^15, 10³86 Joules)

ACKNOWLEDGEMENT

Bilge Karakütük, Zeynep Gülerce, M. Lütfi Süzen, Semih Yücemen, Onur Pekcan, Duygu Tüfekçi Enginar, Setenay Pakize Özaslan, Hakan Bora Okay

METU Department of Civil Engineering, METU Department of Geological Engineering

TUBITAK 121M750: Probabilistic Fault-Induced Tsunami Occurrence and Hazard Analysis for the Aegean Coast: Online Interactive Tsunami Information System

Scenario 4: LBA Tsunami due to Santorini Caldera Collapse

THANK YOU!

Ahmet Cevdet Yalciner^a, Gözde Güney Doğan^{a,b},

yalciner@metu.edu.tr and gguneydogan@gmail.com

^a*Middle East Technical University, Department of Civil Engineering, Coastal and Ocean Engineering Division, Türkiye* ^b*Delft University of Technology, Department of Hydraulic Engineering, Netherlands*

