
Tsunami risk to critical infrastructure: 
Research challenges and potential
Constance Chua
International Research Institute of Disaster Science,
Tohoku University

[Itsuo Inouyue, Associated Press]



2

Economic impacts of disasters to critical infrastructure

• Global Average Annual Loss (AAL) due to 
disasters for infrastructure sectors approximate 
to USD 301 billion1

• Physical assets expected to increase. Annual 
investments of USD 3.7 trillion in infrastructure 
will be needed till 2035, to keep up with 
projected global growth rates1

• Disaster risk financing systems unable to keep 
up with the pace of increasing economic losses 0
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Tsunami damage to power generators in Japan
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Kyodo/Reuters

2011 Tohoku tsunami
• 11 of 54 nuclear reactors were impacted
• Affected national supply - blackouts
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Tsunami damage to other infrastructure
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2011 Tohoku tsunami
• Tsuya railway bridge damaged

[Yashinski M. in Istrati et al. (2017)] 

2018 Palu tsunami
• Fallen gantry crane at Port Pantoloan

2004 India Ocean tsunami
• Collapsed road in Galle, Sri Lanka

Road Development Authority

ASCE

2011 Tohoku tsunami
• Floating tank in Ishinomaki

2011 Tohoku tsunami
• Damaged utility pole in Ishinomaki

湯川伸矢

2004 Indian Ocean tsunami
• Damage to cement factory in Lho’nga

Aydan in Goto., 2008
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Guidelines on tsunami building design

MLIT 2570 (Japan, 2011)
• Building code (revised in 1981; 2000) only accounts 

for earthquake
• Guidelines for tsunami evacuation buildings in 2005
• Provisional amendments after 2011 tsunami to 

consider tsunami loads in building design

ASCE 7-16 (United States, 2016)
• Included a whole new chapter on tsunami loads
• World’s first tsunami design code written in mandatory 

language
• Considers critical infrastructure (Risk Category IV)

MBIE Tsunami loads and effects (New Zealand, 2020) 
• Adapted from ASCE 7-16The Design Method of Safe Buildings that are Structurally 

Resistant to Tsunamis (MLIT Technical Advice No. 2570)

Structure

Inundation 
level for 

design use
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Challenges in quantifying tsunami risk to CI

• Tsunami events are infrequent. Lack of 
observational data.

• Heterogeneous design and configurations of 
components. Difficult to assign common scale 
for risk assessment

• Critical infrastructure systems are interrelated 
and complex – components may originate from 
different technological domains

• Damage observed to one component or facility 
may not be a result of a direct impact from 
tsunami waves

[Hydrogen Production & Electricity Generation Power Plant. Image source: GH Power]
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Cascading impacts of a tsunami from Manila Trench
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Number of shipping routes remaining after a tsunami event

Chua et al. (npj Natural Hazards, 2024)

𝑌𝑌𝑠𝑠 = 11.28𝑥𝑥 − 29.42, 𝑅𝑅2= 0.407
𝑌𝑌𝑝𝑝 = 18.2𝑥𝑥 + 12.08, 𝑅𝑅2= 0.083
𝑌𝑌𝑡𝑡 = 30.52𝑥𝑥 − 20.79, 𝑅𝑅2= 0.186

Operation status
Shutdown (𝑠𝑠)
Partial operation (𝑝𝑝)
Total affected (𝑡𝑡)

Up to 200 days of 
disruption to port 
functions

Mw 9.1 earthquake from Manila Trench
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Changes in demand of port functions in S. China Sea
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Identification of damaged ports Changes in demand of other ports’ functions

Mw 9.1 earthquake from Manila Trench
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Impacts on CI dependencies in Cilacap, Indonesia

Supply nodes: Power Plants; 
Transmission towers; Substations

Demand nodes: Utility Poles 

Edges: Electric cable; Roads

Mw 8.9 earthquake from Java Trench, IndonesiaTelecommunication
Failure threshold: 2.5m

Electric supply
Failure threshold: 2.5m

Nodes: Cell towers
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“ If you can’t measure it, you can’t manage it”
- Peter Drucker



[Itsuo Inouyue, Associated Press]
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Way forward?

Asset level

Network level

Community  level

• Quantifying vulnerabilities by mapping CI systems according 
to their functionalities

• Assess changes in demand for these CI after a disaster -> 
Business continuity plans and recovery plans 
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