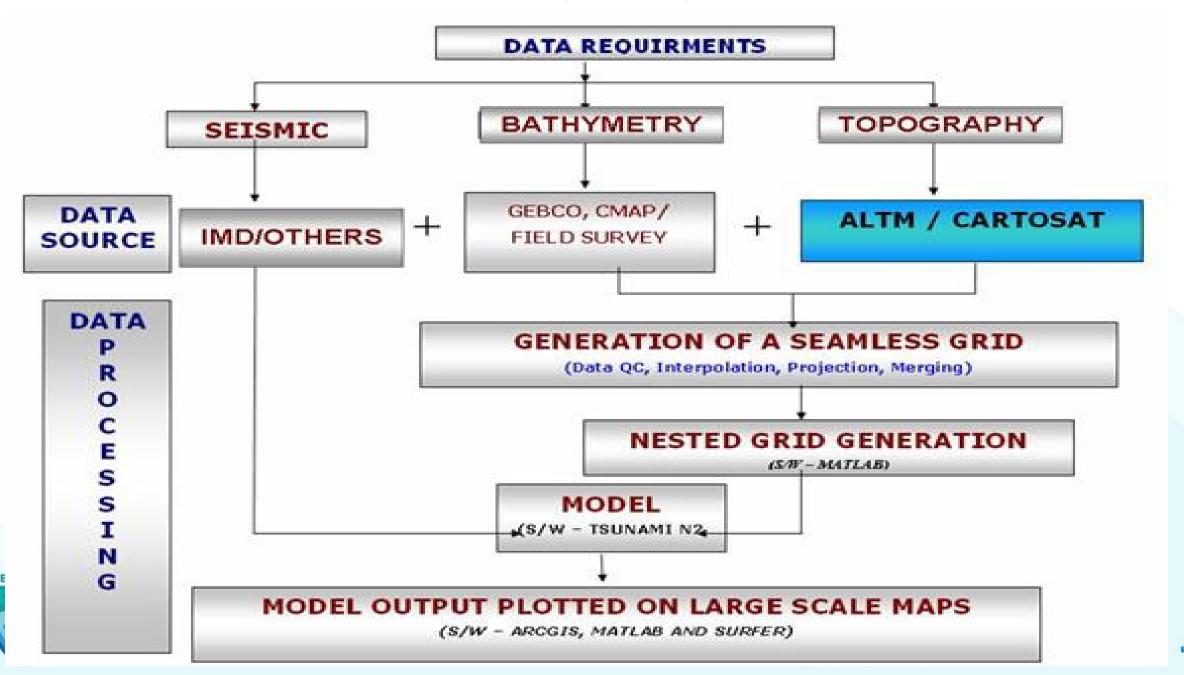


Training/Workshop on


Tsunami Evacuation Maps, Plans, and Procedures and the UNESCO-IOC Tsunami Ready Recognition Programme for the Indian Ocean Member States

Hyderabad - India, 15-23 April 2025

Tsunami Inundation Modelling and Map TIMM: Inundation Mapping Modeling Requirements: Ocean Bathymetry and Land Topography Digital Elevation Models (DEMs), Best practices for constructing DEMs

Dr R S Mahendra Scientist-F, INCOIS **Tsunami Modelling and Mapping-Procedure**

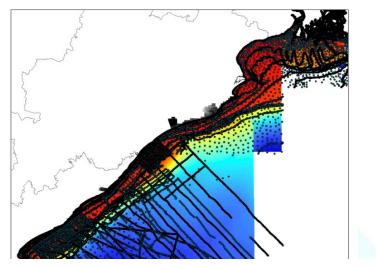
Bathymetry data, Sources and merging

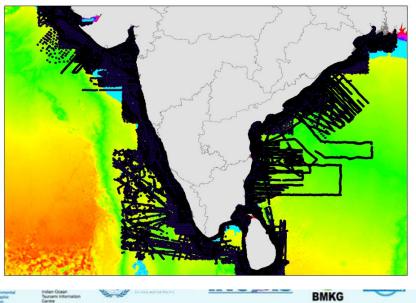
•Define:

- Bathymetry = underwater elevation (ocean floors, lakes)
- **Topography** = land elevation
- •Purpose: Why merge them?
 - Create seamless land-sea DEMs
 - Coastal flood modeling, marine navigation, ocean circulation models
 - Improve accuracy of Earth surface representation

Method of Generation of bathymetry data Survey from sea

- Single Beam Echosounder (SBE)
- Multibeam echosounders (MBE)
- Sounding


Satellite:


- Optical characteristics and inhering water depth
- Wave characteristics
- Bathymetric LIDAR

BATHYMETRY	RESOLOTION	SOURCE
GEBCO	500 m	https://www.gebco.net/
ЕТОРО 2022	500 m	https://www.ngdc.noaa .gov

Example: NHO Charts, SBE, MBE from ship for deep areas, coastal Jetski fitted with SBM and GPS

Bathymetry data, Sources and merging

Method of Generation of Topographic data Survey from sea

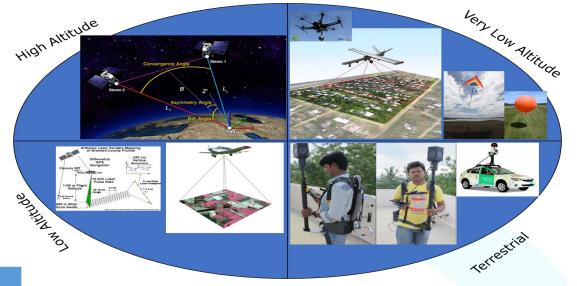
- GPS, RTK, Levelling, etc
- 360 degree street mapping

Remote Sensing (Photogrammetry and LiDAR mapping)

- Drones
- Aerial

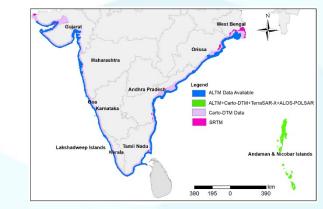
Satellite:

- Oprical:Satellite Stereo
- Microwave: Interferometric


Opensource Global Topographic data sources

BATHYMETRY	RESOLOTION	SOURCE
SRTM (Shuttle Radar Topography Mission)	30 m	USGS EarthExplorer
Copernicus DEM (EU-DEM)	30 m	Copernicus Open Access Hub
ASTER GDEM	30m	NASA Earthdata
ALOS World 3D (AW3D30)	30m	ALOS Global DSM
MERIT DEM	90m	MERIT DEM Project Page

TEMPP 2023



Examples of Topographic Mapping Techniques

Topography data sources

- ALTM
- Carto-DTM
- Terrasar-x

Bathymetry and topographic data merging

•QGIS – Free & open-source GIS platform

•GDAL / Rasterio / xarray (Python) – Programmatic access and

•Panoply - Great for quickly viewing NetCDF/HDF data

•Blender / 3D Mapping – For visualizing terrain in 3D

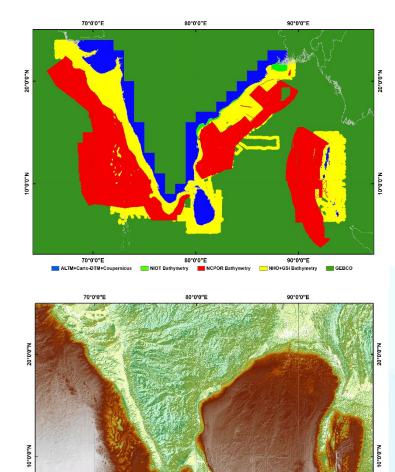
Challenge	Details	
Different Resolutions	Land data often finer than ocean data	
Data Voids	Deep ocean areas lack measurements	
Vertical Datums	Mean Sea Level vs. EGM96, NAVD88, etc.	
Edge Matching	Seamless transitions at coastlines	
Coordinate Systems	UTM vs geographic, projections	
Units	Meters vs. feet, positive up vs. down	

Tools

analysis

Merging Methods 1. Simple Overlay / Mosaic •Use raster calculator or merge tools •Priority to highest resolution or trusted source

2. Blending Zones
Create transitional zones along coasts
Use weighted averaging to smooth junctions


3. Interpolation for Gaps•Fill in missing data using IDW, spline, kriging

Interpolation techniques

Method	Smoothness	Preserves Sharp Features	Speed	Good for Sparse Data	Notes
IDW	Medium	No	Fast	Yes	Simple & fast
Kriging	High	No	Slow	Yes	Statistically powerful
TIN	Low-Med	Yes	Medium	Yes	Vector-based
Natural Neighbor	High	Somewhat	Medium	Somewhat	Smooth + natural
Spline	High	No	Medium	No	Can oversmooth

Example

90°0'0"E

80°0'0"E

70°0'0"E

Thank you

