

Training/Workshop on

Tsunami Evacuation Maps, Plans, and Procedures and the UNESCO-IOC Tsunami Ready Recognition Programme for the Indian Ocean Member States

Hyderabad - India, 15-23 April 2025

Tsunami Inundation Modelling and MAP TIMM #: Tsunami Science, Modelling and Forecasting - II Summary of different models

Physical Characteristics of a Tsunami in Deep Water

- Propagation Speed: Speed depends on ocean depth, H.
 - In practice: H=5 Km, v=220 m/s (~=800 Km/h)
 - (approximate cruise velocity of a commercial airliner)

- Maximum Amplitude, z: from a few centimeters to a half meter.
 - Typical Wavelength: Λ = 300 km (period ~ 600 s-3000s)

• A tsunami is always composed of several waves.

Physical Characteristics of a Tsunami in Deep Water

• A tsunami is always a long wave (alt. A wave in shallow water).

• A tsunami is a non-dispersive wave.

$$c = \frac{\omega}{k} = \sqrt{\frac{g \times Tanh(kH)}{k}}$$

Example of dispersive wave behavior

Wave Dispersion

4

Physical Characteristics of a Tsunami in Shallow Water

Propagation Speed: Speed depends on ocean depth, H.

TEMPP 202

Physical Characteristics of a Tsunami in Shallow Water.

• Tsunami wave heights in shallow water can reach tens of meters.

• Typical wavelengths will range between 10-20 Km.

• The size of the tsunami wavelength makes it much more destructive than storm waves.

Methods to solve the Shallow water Equations

- Analytical solutions
 Closed-form solution. This is not possible in all cases.
- 2 Finite Difference Method (FDM)

Differential Equations are discretized using Taylor series and time-integrated Ex: **comMIT**, TUNAMI, COMCOT, **MOST**, FUNWAVE

3 Finite Element Method (FEM)

Subdivides domain into smaller parts called finite elements and are then assembled into the main domain

Ex: ADCIRC, CAST3M, (ABAQUS, ANSYS, COMSOL)

4 Finite Volume Method (FVM)

Volume integrals with divergence term are converted to surface integrals, using the divergence theorem and fluxes are evaluated at the surfaces Ex: ANUGA, CLAWPACK, FVCOM, OPEN-FOAM, (FLUENT)

5 Finite Particle Method (FPM)

TEV

The differentials are converted into a summation formula using kernel functions that operates on nearby data points

Ex: Smoothed Particle Hydrodynamics (SPH)

SIMPLIFICATIONS IN THE SHALLOW WATER EQUATIONS

-Long wavelength compared with the local depth

-Uniform vertical profiles of horizontal velocities

-Hydrostatic pressure conditions.

-Inviscid fluid.

$$\omega = \sqrt{gkTanh(kH)} \xrightarrow{k H - \theta} v = \frac{\omega}{k} = \sqrt{gH}$$

Dispersive vs. Non-dispersive Models

Non-dispersive Model Characteristics	Dispersive Model Characteristics
1 Range of Validity:	11-Range of Validity:
-in deep water -for long waves. -for long and intermediate wavelengths -for wave of any amplitude	-in water of intermediate depth(Standard Boussinesq, $O(\epsilon)=O(\mu^2)<<1$). $\epsilon=a/h$, $\mu=kh$, Valid of weakly non-linear waves.
2 Capable of computing inundation	-for long and intermediate wavelengths. -for waves of any amplitude.
3 Capable of including numerical and amplitude dispersion	2 Capable of computing inundation
4 Intermediate computational speed	3 Capable of computing numerical, amplitude and frequency dispersion.

- 5 Example: MOST (ComMIT), GeoClaw,..
- 4 Intense and slow computational speed

5 Example: COULWAVE, FunWAVE,...

		Usable Sources		NTHMP		Available for download			Relat	ive	Model Physics ¹
		Seismic	Landslide	Bench Propagation	marks Inundation	Documentation	Available	User	run-t	ime -days	•
			(including				thru	interface	🗟 da	ys	
			volcanic, mass				website		222 n	ionth	
ш	Model Name		failures,								
Ŧ			underwater								
			, over								
1	ALASKA GI'T	$\overline{1}$	water)			Limited	$\overline{\mathbf{v}}$		8		SW
2	BOSZ	$\frac{1}{\sqrt{1}}$		$\frac{}{}$	N/	Limited	~		88		B
	FUNWAVE-TVD v10			N N	↓	Good	N N				B
- -	GeoClaw	↓		↓	↓	Good					B
6	MOST (ComMIT)	, ,		, ,		Limited	•	√	2		SW
-7	NEOWAVE	↓√		$\overline{\mathbf{v}}$	$\overline{1}$	Good					B
8	SELFE	√		\checkmark		Good					CFD
9	TSUNAMI3D		$\overline{}$	$\overline{\mathbf{v}}$	\neg	Limited			222		CFD
EMF() 2	TUNAMI/TUNAMI-N2			\checkmark	\checkmark	Good			88		SW

Table 1.1. List of Numerical Tsunami Models approved by NTHMP/MMS.

¹Model Physics

SW = A 2D model which employs linear and non-linear Shallow Water (SW) equations for tsunami generation, propagation and wave runup/drawdown. Pressure field is hydrostatic and the formulation ignores viscous effects, so these models are not recommended for landslide generated tsunary. No vertical velocity and the modeled horizontal velocities are depth-averaged. Physical tsunami dispersion is often mimicked through numerical model dispersion. The practical choice for tsunami propagation and inundation simulations, however, models using depth-averaged wave equations cannot adequately address all the wave-structure interaction issues near the coast.

VALIDACION DE LAS CORRIENTES DE TSUNAMI

BMKG

TEMPP 2025

What can we do about forecasting Tsunamis?

• Deploy Detection Hardware.

• Develop algorithms to interpret in-coming data.

 Develop numerical models to forecast/assess tsunami impact on the coast.

What do we constrain with the deep-water DART measurement?

NOAA deep-water propagation model run database...

TEMPP 2025

 Why can we just add arbitrary prerun models together during a

Any combination of solutions to thelinear equations of motion is also a solution:

Linearity...

SIMPLIFICATIONS IN THE SHALLOW WATER EQUATIONS

TEMPP 2025

Hydrostatic Approximation:

$$p(x, y, z, t) = \int_{z}^{\eta} \rho g dz = \rho g \Big[\eta(x, y, t) - z \Big]$$

Illustration of Deep Water Linearity

Illustration of Deep Water Linearity

Linearity allows for the reconstruction of an arbitrary tsunami sources using elementary building blocks

For linearity u << gh $\sqrt{0.1^2 + 0.1^2} \ll \sqrt{9.8 \times 10}$

INCOIS

ВМКС

- We know the deep-water tsunami obeys linear equations of motion
- We have many, many pre-run deep-water model runs in a "Propagation Database"

How do we produce the right combination duringan event?

- WebSIFT demo
- http://sift.pmel.noaa.gov/websift

Hazard Assessment: Historical Record

- TsuCAT demo
 - http://nctr.pmel.noaa.gov/TsuCAT

- Now we have the "best-fit" deep-water propagation run...
- How do we get the solution to the harbor?

Inundation... with ComMIT

TEMPP 2025

Inundation: 3 telescoping grids

- 3 nested grids used to model the shoaling wave evolution from deep-water to shallow bay, harbor, or coastline
- optimized to run quickly
- takes forcing from linearly-combined, prerun Propagation model output

2 5

Why model separately?

Reason 1: Different scales

TEMPP 2025

Propagation scale

Inundation model scale

Andreanov tsunami "inundation" model comparison with tide-gage data

Cen. Kuri Tsunami Mw = 8.1 2006.11.15 11:14:16 UTC 05h50m01s NOAA/PMEL/NCTR

Honolulu

Hour after earthquake

Kahului

10

Small scale inundation effects

Port Vila, Vanuatu. Hypothetical Mw8.1 tsunami

NOAA Tsunami Forecast

NOAA Tsunami Forecast

The November 15, 2006 Central Kuril Tsunami

August 10, 2009 Andaman

BMKG

TEMPP 2025

BMKG

Summary - NOAA's numerical forecasting techniques

- Earthquakes are the major generation mechanism, but tsunamis can have more than one.
- The source is complicated, so we measure the wave directly.
- DART buoy data helps us to constrain the model
- Inverted propagation model is used to force the inundation model.

Developing Inundation Grids

- Reference model uses the highest quality and resolution available for a community
- Model from different sources is combined to form 3 nested grids
- Tested against historical data, and for robustness
- Highly optimized grids are derived from the reference grids

4 0

Creation of the SIM Set of Grids

Monitor time series degradation at Warning Point and/or Tide Gage by comparison with Reference Run. (No tide-gage data available for Seaside)

Thank you

