

Training/Workshop on

Tsunami Evacuation Maps, Plans, and Procedures and the UNESCO-IOC Tsunami Ready Recognition Programme for the Indian Ocean Member States

Hyderabad - India, 15-23 April 2025

Tsunami Inundation Modelling and Map

TIMM: Hazard Assessment Products and Hazard Assessment Report - Best Practices and Example

Dr R S Mahendra Scientist-E, INCOIS

Introduction

1. Hazard Identification Checklists

•**Purpose**: Systematically identify hazards in various environments (e.g., office, construction, lab). •**Best Practices**:

- Specific requirement (disaster management and industries).
- Include physical, chemical, biological, ergonomic, and psychosocial hazards.
- Use clear, simple language with visual cues if possible.

2. Risk Matrix

•**Purpose**: Evaluate severity and likelihood of identified hazards. •**Best Practices**:

- Use a color-coded 5x5 or 3x3 matrix (e.g., low, medium, high).
- Define probability and consequence criteria.
- Use consistent scoring.

Vulnerability and Role of Geospatial Technology

Vulnerability is the degree to which a system is prone to harmful effects of climate change and its variability and extremes (IPCC 2001). **V**ulnerability is a function of hazard, exposure and sensitivity of physical or biophysical components.

Approach: Deterministic and Probabilistic

RISK

Geospatial Technology plays a vital role in the disaster management cycle for information and informed decisions

Tsunami Inundation modeling and vulnerability mapping West Bengal Gujarat Orissa Maharashtra 16€N Legend Andhra Pradesh ALTM Data Available ALTM+Carto-DTM+TerraSAR-X+ALOS-POLSAR

Karnataka Carto-DTM Data SRTM Tamil Nadu Lakshadweep Islands erala Andaman & Nicobar Islands 390 195 0 390

- •ALTM data for the Indian Mainland
- Carto-DTM for the Indian Mainland.
- Merged hybrid data from ALTM, Carto-DTM and Terrasar-x data for Andaman and Nicobar Islands
- Bathymetry data available from all the sources

Historical & Worst case scenario

Parameters	Source	Longitude	Latitude	Magnitude	
Sumatra 2004	Sumatra	95.85 ⁰ E	3.32 ⁰ N	9.3 Mw	
Car Nicobar 1881	Car Nicobar	92.43	8.52	7.9 Mw	
Andaman 1941	North Andaman	92.5º E	12.1 ⁰ N	7.7 Mw	
Marakan 1762	Arakan	94	19	8.8 Mw	
Worst-Case	Car Nicobar	92.43	8.52	9.3 Mw	
Worst-Case	North Andaman	92.43	8.52	9.3 Mw	

Mapping of Coastal Vulnerability to Tsunamis

Mapping of Coastal Vulnerability to Cyclone (storm surge)

Assessment of Coastal Vulnerability Indices (CVI)

Data Used

Parameter	Data
Geomorphology	IRS LISS-IV
Slope	GEBCO
Elevation	SRTM
Tidal Range	Astronomical tide from WXTide-32
Shoreline Change Rate	Landsat data (1972-2000)
Historical Sea Level	GLOSS long term tide gauge observation
Significant Wave Height	Simulated data from Mike model

Hazard: An event has the potential for causing loss or injury of life/property or environment Hazard

Disaster: An event characterized by destruction of life/property or environment by which a system can't cope itself and need external help.

Mulnerability: A system is exposed to hazards which as being damaged or distributed

Risk: Measured expected loss due to exposed hazards in a given area at a particular time.

Coastal Vulnerability Atlas

CVI Atlas covering Indian coast comprising 156 maps on 1:11akh scales has been prepared and released on May 09, 2012

TEMPP 2025

INCOIS, (2012). Coastal Vulnerability Atlas of India. INCOIS-ASG-CGAM-CV-2012-01, Pages 212, Maps 156, INCOIS, Hyderabad, India. ISBN 978-81-923474-0-0.

Coastal Multi-hazard Vulnerability Assessment

"The Multi-Hazard Map is a "composite, synthesized and overlay of multiple hazards"

	Data	Resolution (m)	Period	Parameters			
	ALTM	5	2007	Elevation Contours			
	Carto DTM	10	2006-07				
	Landsat, MSS	57-30	1972-2000	Shoreline Change			
TEMPP 2025	Tide gauge		1952-2005	Sea Level Change			
	Hourly Tide gauge data and published literature	-		Extreme Water Levels	P INCOIS		ELECTRON REAL
				Conversion Contra		BMIKG	

Assessment of extreme water level from historical tide data

1 🕢

unesco

ESCAP

INCOIS

BMKG

The SLRP-2 has been used to calculate the predicted data to estimate the residuals

Extreme Water level return period was estimated for the above stations based on the Grigorton probability distribution method

Coastal Multi-hazard Vulnerability Assessment

SYNTHESYZED SPATIAL OVERLAY ANALYSIS

Composite Multi-hazard Line

Multi-hazard Zones

Hazard Zone

Safe Zone

Landuse/Landcover

Buildings

Layer Integration

ESCAP

INC

INCOIS

Unesco Intergovernmental Opernoprasific Conversioni

MHVM risk assessment up to village level

Socio-Economic Vulnerability Index case study1

Sensitivity (social)

Sensit

	(1)	Small and marginal farm(ers) (SMF)
	(2)	Agriculture labourers (AL)
	(3)	Fishers population (FP)
	(4)	Malnutrition (FSM)
	(5)	Population density (PD)
	(6)	SC/ST population (SCST)
ivity (e	conor	nic)
	(7)	Net sown area (NSA)
	(8)	Annual rainfall (AR)
	(9)	Dependence on natural resource (DNR)
	(10)	Distance to nearest town (DNT)
	(11)	Distance to nearest hospital (DNH)

Adaptive capacity (social)

(1)	Education status (ES)
(2)	Household amenities (HA)
(3)	Housing condition (HC)
(4)	Community infrastructure (CI)
(5)	Population growth rate (PGR)
(6)	Gender ratio (GR)

Adaptive capacity (economic)

- (7) Transport and communication (TC)
- (8) Economic dependency ratio (EDR)
- (9) Access to market (AM)
- (10) Net irrigated area (NIA)
- (11) Groundwater development (GD)
- (12) Livestock population (LP)

33-indicators

Ambio https://doi.org/10.1007/s13280-018-1061-8 RESEARCH ARTICLE KUNGL. VETENSKAPS AKADEMIEN Det sowi aktuer welden of detects

Framework for mapping the drivers of coastal vulnerability and spatial decision making for climate-change adaptation: A case study from Maharashtra, India

Pandian Krishnan (), Pachampalayam Shanmugam Ananthan, Ramachandran Purvaja, Jeyapaul Joyson Joe Jeevamani, John Amali Infantina, Cherukumalii Srinivasa Rao, Arur Anand, <u>Ranganalii Somabekkarappan Mahendra, Jyyapa Sekar,</u> Kalakada Karcemulia, Amit Biswas, Regulagedda Kalpana Sastry, Ramachandran Ramesh

SMF-Small and Marginal Farmers, AL-Agricultural Labourers, FP-Fishers Population, FSM-Food Sufficiency/ Malnutrition, PD-Population Density, SCST-Schedule Castes/Schedule Tribes Population, NSA-Net Sown Area, AR-Annual Rainfall, DNR-Dependence on Natural Resources, DNT-Distance to Nearest Town, DNH-Distance to Nearest Hospital, TC-Transport and Communication, EDR- Economic Dependency Ratio, AM- Access to Market, NIA- Net Irrigated Area, GD- Groundwater Development, LP-Livestock Population, ES-Education Status, HA-Household Amenities, HC- Housing Condition, CI- Community Infrastructure, PGR-Population Growth Rate, GR- Gender Ratio

Fig. 8 Illustration of status of contributing factors for a representative village in Devgad for intervention planning (red most important, green least important)

Socio-Economic Vulnerability Index case study2

Fig. 3. Marine fishing village-wise (a) EI, (b) SI, (c) ACI, (d) CVIPH and (e) SEVIPH obtained in relative scale (RS) [Note: Singithurai village is not shown in the map).

54 indicators

Geospatial assessment of flood hazard along the Tamil Nadu coast

Thank you

