

Version: 2.0 April 2025

Essential Ocean Variable Specification Sheet

Coral Cover and Composition

Biology and Ecosystems Panel

Global Ocean Observing System (2024). Essential Ocean Variable Specification Sheet: Coral cover and composition. GOOS Reference No; DOI: [to be assigned]

EOV Specification Sheet curated by:

DETAILED INFORMATION ON HOW TO READ THE SPECIFICATION SHEET CAN BE FOUND IN THIS GUIDE

Background and justification

Corals span shallow tropical waters to deep-sea environments, forming biodiverse reefs of immense ecological and economic importance. As ecosystem engineers, hard corals (Scleractinia, Stylasteridae), soft corals (Octocorallia), and sponges create biogenic habitats that support 25% of marine species while sustaining fisheries worth 6.8 billion annually (Souster et al., 2021). These ecosystems provide coastal protection, novel pharmaceuticals, and contribute 375 billion yearly to the global economy, including 36 billion from reef tourism.

Despite their value, corals are exceptionally vulnerable due to slow growth rates and sensitivity to environmental changes. Climate change threatens 70-90% of shallow reefs with extinction by 2050 (IPCC), while degraded reefs could expose 63 million more people to annual flooding by 2100 (IPCC). Additional pressures include ocean acidification, pollution, and destructive practices like deep-sea mining, which risks irreversible damage to 4,000-year-old deep sea coral colonies (NOAA, 2021).

Monitoring these ecosystems requires specialized approaches: shallow-water corals (0-30m) are studied via SCUBA surveys assessing live cover, bleaching, and recruitment, while deep-sea corals (>200m) demand advanced technologies like ROVs, AUVs, and seabed mapping to evaluate Vulnerable Marine Ecosystems (VMEs). Ongoing research integrates these methods - combining eDNA analysis, high-resolution imaging, and terrain mapping - to develop comprehensive conservation strategies for coral communities worldwide.

Integration with Global Observation Frameworks

The Global Climate Observing System (GCOS) developed the Essential Climate Variable (ECV) framework to define necessary observations for monitoring Earth's climate (Bojinski et al., 2014). Some EOVs, including ocean physics, biogeochemistry, and biology/ecosystems variables (GCOS, 2022a; GCOS, 2022b), are also ECVs.

The Essential Biodiversity Variables (EBVs) defined and curated by the Group on Earth Observations Biodiversity Observation Network (GEO BON) complement the GOOS biological and ecosystem (BioEco) EOVs (Muller-Karger et al., 2018; Bax et al., 2019). The EOVs represent the basic observations of a particular parameter or process. EBVs are time series of biodiversity observations across genes, species populations, communities, or ecosystems. Thus, EOVs may be seen as the building blocks for GEO BON EBVs. The EOVs can be used to synthesise the EBVs as time series of BioEco EOV sub-variables at one location, or as time series of gridded, mapped, or modelled EOVs (Jetz et al., 2019). The Coral Cover and Composition EOV contributes to both ECVs and EBVs, as well as to many indicators used for policy and assessment (Obura et al. 2019), providing critical data for understanding and managing marine ecosystems over short periods to climate time scales. The GOOS Biology and Ecosystems Panel collaborates with the Physics and Climate and Biogeochemistry Panels to advance EOVs, advocating for the need for biological observations, information management, and applications. GOOS, MBON, GEO BON, and OBIS work together to standardise guidelines and data management for EOVs, EBVs, and ECVs.

Current observing networks and coordination

Diverse networks and communities are collecting observations of biology and ecosystems EOVs at different scales and in different regions. An initial baseline survey conducted in 2019/20 identified 203 active, long-term (>5 years) observing programs systematically sampling marine life. These programs spanned about 7% of the ocean surface area, mostly concentrated in coastal regions of the United States, Canada, Europe, and Australia (Satterthwaite et al 2021). This information can be found in the GOOS BioEco Metadata Portal, which is continually updated. To consult the latest information, please visit: <u>https://bioeco.goosocean.org</u>.

Contributes to	D:				
EBV:	Ecosystem functioning	Genetic composition	Species traits ECV	/: Marine Habitats	
CBD: Target 1	Target 2	Target 4 Target 5	Target 7	Target 9 Target	11 Target 20
Target 21			Y DON G CLEAN MATER AND SAMELADIN I I I I I I I I I I I I I I I I I I I		on 13 climate

1. EOV information								
ESSENTIAL OCEAN VARIABLE (EOV)	Coral cover and composition							
DEFINITION	For the purpose of this EOV, corals encompass both warm-water species generally found in tropical regions and accessible by SCUBA (0–30 m), and cold-water specie inhabiting mesophotic to deep-sea waters (>30 m) in tropical, temperate, and polar settings—where advanced monitoring methods (e.g., technical diving, ROVs, AUVs, towed camera systems, benthic landers, and crewed submersibles) become necessary (>200m). Corals are further subdivided into hard corals (Scleractinia, Stylasteridae) and soft corals (Octocorallia), accommodating their distinct morphologies and ecological functions.							
EOV SUB-VARIABLES	Coral condition and health (e.g., bleaching, disease, mortality, disturbance) Coral diversity (at the most accurate resolution recorded in Darwin Core format: Family, Genera, Species, Morphotype) Live coral cover and areal extent (percentage of living coral on available substrate and the total spatial footprint) Total habitable substrate (structural complexity such as rugosity)							
SUPPORTING VARIABLES	Temperature (sea surface temperature, subsurface temperature) Salinity (sea surface salinity, subsurface salinity) Turbidity (ocean colour, dissolved organic carbon, particulate matter) pH (oxygen) Total alkalinity (stable carbon isotopes) Dissolved inorganic carbon (DIC) (inorganic carbon, transient tracers) Herbivory & reef EOVs (macroalgal canopy cover & composition, fish abundance & distribution)							
DERIVED PRODUCTS	Coral cover, areal extent and habitat mapping (GIS mapped layers/grid cells) Coral health and condition inventory (disease prevalence, overall condition) Coral diversity and recruitment inventory (taxonomic, size-class diversity etc.) Coral reef habitat classification inventory (e.g., patch, low relief, high relief, etc.) Coral reef system health assessment (inclusive of fish and macroalgae EOVs) ESA and Red List species inventory (focus on species of conservation concern) Habitat risk mapping (e.g. temp., pH, turbidity, areas at risk of eutrophication, etc.							

This section prese This list is not exha	2. Phenomena to observe - what we want to observe with this EOV This section presents an example of 3 priority phenomena for GOOS that can be (partly) characterised by this EOV's sub-variables. This list is not exhaustive but serves to provide general guidance on how observation efforts can structure their planning and implementation. The GOOS application area(s) relevant to the phenomena are depicted as follows: climate Output Output O										
PHENOMENA TO OBSERVE Reef Status and Trends Trends Internet into the interval of the interval											
	HORIZONTAL	Local, regional, and global Warm-water corals (0–40 m, SCUBA-accessible, typically tropical) Cold-water corals (>40 m, from mesophotic to deep-sea, ROV/AUV accessible, tropical to polar)	Local to regional	Local to regional							
PHENOMENA EXTENT	VERTICAL	Upper to deep-ocean , integrating shallow SCUBA surveys (0–40 m) and deep-sea imaging (>40 m) Warm-water (coastal reefs) Cold-water (continental shelves, slopes, seamounts, canyons)	Upper to deep-ocean	Upper to deep-ocean							
	TEMPORAL	Years to decades	Days to weeks to 2-3 years (dependent on whether short episodic events or larger scale, monitoring should be event-based)	Weeks to months (short-term recovery) to months to years (long-term recovery)							

DRAFT

RESOLUTION	HORIZONTAL	Local (1-20m, high-res SCUBA or ROV imaging) to regional (20-200m, remote sensing, sonar) to global (>200m, global synthesis)	Local (1-20m) to regional (20-100m)	Local (1-20m) to regional (20-100m)
TO OBSERVE PHENOMENA	VERTICAL	Upper-ocean (1-30) Mesophotic (30-200) Deep-ocean (>200m)	Upper-ocean (1-30) Mesophotic (30-200) Deep-ocean (>200m)	Upper-ocean (1-30) Mesophotic (30-200) Deep-ocean (>200m)
	TEMPORAL	Yearly (for 10+ years)	Quarterly to yearly	Yearly (or depending on recovery trajectory)
SIGNAL TO CAP	TURE	1-2% annual change	>10% change in coral coverage/composition	
SUB-VARIABLES MEASURE	NEEDED TO	 Coral condition and health Coral diversity Live coral cover and areal extent Total habitable substrate 	1. Live coral cover and areal extent	1. Coral condition and health
SUPPORTING VARIABLES NEEDED TO MEASURE		Temperature (sea surface temperature, subsurface temperature), turbidity (ocean colour, dissolved organic carbon, particulate matter), herbivory & reef EOVs (macroalgal canopy cover and composition, fish abundance & distribution), dissolved inorganic carbon (DIC) (inorganic carbon)	Temperature (<u>sea surface</u> <u>temperature</u> , <u>subsurface</u> <u>temperature</u>), <u>salinity</u> (<u>sea surface</u> <u>salinity</u> , <u>subsurface salinity</u>), <u>turbidity</u> (<u>ocean colour</u> , <u>particulate matter</u>), <u>pH</u> (<u>oxygen</u>), <u>total alkalinity</u> (<u>stable</u> <u>carbon isotopes</u>), <u>herbivory & reef</u> <u>EOVs</u> (<u>macroalgal canopy cover &</u> <u>composition</u> , <u>fish abundance &</u> <u>distribution</u>)	Temperature (<u>sea surface</u> temperature, <u>subsurface</u> temperature), <u>salinity</u> (<u>sea surface</u> salinity, <u>subsurface salinity</u>), pH (oxygen), total alkalinity (<u>stable</u> carbon isotopes), dissolved inorganic carbon (DIC) (<u>inorganic</u> <u>carbon</u>), herbivory & reef EOVs (<u>macroalgal canopy cover &</u> <u>composition</u> , fish abundance & <u>distribution</u>)

3. GOOS Observing Specifications or Requirements

This section outlines ideal measurements for an optimal observing system for this Essential Ocean Variable (EOV). It offers guidance on creating a long-term system to observe key phenomena related to the EOV. These values are not mandatory, and no single system is expected to meet all requirements. Instead, the combined efforts of various observing systems should aim to meet these goals. Observations at different scales are also valuable contributions to global ocean observation if shared openly.

EOV	Coral cover and composition											
PHENOMENA	Extreme eve	Reef status and trends (measured by all sub-variables) Extreme events and mass mortality (measured through live coral cover and areal extent) Community recovery and regeneration (measured by coral condition and health)										
EOV SUB-VARIABLE S	Coral condi	tion and he	ealth		DEFINITION		Coral condition and health describes the current state of coral colonies by measuring indicators such as [% tissue death, % mortality, % damage]. These provide insight on environmental/anthropocentric impacts on coral stress and resilience.					
	Resolution				Uncerta	inty	Sampling					
	Spatial Horizontal	Spatial Vertical	Temporal	Timeliness	Measurement	Stability	approach	References				
IDEAL SHALLOW	1-5m grid		Monthly or quarterly	Data or cruise metadata available within month of collection	±5%	> 10 years, long-term monitoring	 In-situ surveying (photo/video) Forecast modeling (ex. thermal stress prediction) Satellite SST observations (monitoring for thermal anomalies or diseases) Imaging w/ AUVs or 	1. Towle et al. 2021 2. Maynard et al. 2010 3. Liu et al. 2014, NOAA Coral Reef Watch program 4. Levy et al. 2018; Grasmueck et al. 2006 5. Combs et al. 2021 6. Roach et al. 2021				

						6. SfM software/photomosaics	
IDEAL DEEP/MESOPHO TIC	High-res imaging to meter resolution	Monthly or quarterly	Data or cruise metadata available within month of collection	15±%	> 10 years, long-term monitoring	 ROVs/AUVs w/ high-res imaging and/or sonar 3D photogrammetry over transects Genetic tools (eDNA, metabarcoding) for species ID and stress-markers Forecast modeling (monitoring for thermal anomalies or disease) 	 <u>Aquzzi et al. 2024</u>, (ex. ROV SuBastian (Schmidt Ocean Institute); HROV NUI (WHOI); AUV Sentry (WHOI)) <u>Combs et al. 2021</u>. <u>Avnard et al. 2010</u> NOAA Deep Sea Coral Program
DESIRABLE SHALLOW	10-20m grid	Annual	Data available within 6-12 months of collection	±10%	5-10 years, med-term monitoring	 Visual census methods or AUV surveying for larger scale assessments AUV surveying 	1. <u>Grasmueck et al, 2006</u> 2.
DESIRABLE DEEP/MESOPHO TIC	Meter-scale (site-level)	Annual	Data available within 6-12 months of collection	20±%	5-10 years, med-term monitoring	 Imaging w/ ROVs/AUVs across fixed sites Drop-camera arrays 	1. <u>Grasmueck et al, 2006</u> 2.
MINIMUM SHALLOW	>20m grid	Bi-annual	Data available within 1 year of collection	15±%	< 5 years, short-term monitoring	 Opportunistic in-situ (snorkel/SCUBA visual assessments) Local/volunteer-based coral reef monitoring 	1. 2. <u>Forrester et al. 2014</u>
MINIMUM DEEP/MESOPHO TIC	Broad estimates from cruises & surveys	Opportunistic deep-water surveying via research cruises	Data available within 1 year of collection	25±%	< 5 years, short-term monitoring	1. Drop cameras and/or other basic imaging techniques from research cruises	1. <u>Aguzzi et al, 2024</u>

EOV SUB-VARIABLE	Coral diversity				DEFINITION		Coral diversity is the variety/abundance of cora different taxonomic levels (species, genera ar functional type; alpha, beta or gamma) within a classified reef-area: species/area (m2)	
	l Spatial Horizontal	Resolutior Spatial Vertical	n Temporal	Timeliness	Uncertainty Measurement	Stability	Sampling approach	References
IDEAL SHALLOW	1-5m grid		Monthly or quarterly	Data or cruise metadata available within month of collection	±5%	> 10 years, long-term monitoring	 Hi-res imaging; 3D photogrammetry over transects or SfM software/photomosaics In-situ surveying using photo/videographic methods over transects Genetic tools (eDNA, metabarcoding) for accurate taxonomic classification Taxonomic verification through physical sampling, specimen collection to support imaging/genetic methods 	1. <u>Nocerino et al, 2020</u> 2. <u>Towle et al. 2021</u> 3. <u>Alexander et al. 2020</u> (Scleractinia); <u>Levy et al, 2023;</u> <u>Satoh et al, 2024</u>
IDEAL DEEP/MESOPHO TIC	High-res imaging to meter resolution		Monthly or quarterly	Data or cruise metadata available within month of collection	15±%	> 10 years, long-term monitoring	 ROV-based hi-res imaging; 3D photogrammetry over transects or SfM software/photomosaics Direct observations of ROV/submersible (imaging, physical sampling) Genetic tools (eDNA, metabarcoding) for accurate taxonomic classification 	1. <u>Price et al. 2019</u>

						4. Taxonomic verification through physical sampling, specimen collection to support imaging/genetic methods	
DESIRABLE SHALLOW	10-20m grid	Annual	Data available within 6-12 months of collection	±10%	5-10 years, med-term monitoring	 Visual census methods and/or AUVs Occasional genetic sampling 	1. <u>Grasmueck et al, 2006</u>
DESIRABLE DEEP/MESOPHO TIC		Annual	Data available within 6-12 months of collection	20±%	5-10 years, med-term monitoring	 Hi-res (photogrammetry over transects), in-situ Occasional genetic sampling 	
MINIMUM SHALLOW	>20m grid	Bi-annual	Data available within 1 year of collection	15±%	< 5 years, short-term monitoring	 Ad-hoc in-situ sampling and photographic documentation for basic taxonomic estimates Local/volunteer-based coral reef monitoring 	1. <u>Forrester et al, 2014</u>
MINIMUM DEEP/MESOPHO TIC	Broad estimates from cruises & surveys	Opportunistic deep-water surveying via research cruises	Data available within 1 year of collection	25±%	< 5 years, short-term monitoring	1. Ad-hoc surveying with drop cameras and/or other basic imaging techniques from research cruises for basic taxonomic estimates	

EOV SUB-VARIABLE	Live coral cover and areal extent				DEFINITION		Live coral cover is the % area covered by live coral and areal extent is the % total geograp area occupied by reefs. These provide monitor reef health and spatial distributions (m).	
	Resolution Spatial Spatial Temporal Timeliness	Timeliness	Uncertainty Measurement	Stability	Sampling approach	References		
IDEAL SHALLOW	Horizontal	Vertical	Monthly or quarterly	Data or cruise metadata available within month of collection	±5%	> 10 years, long-term monitoring	 Hi-resolution (satellite data) remote sensing (i.e. 3D mapping w/ satellite stereo-imagery and/or underwater video) In-situ measurements for coral cover, areal extent Satellite observations (monitoring for thermal stress via sea surface temperature/forecasts) eDNA measurements for rapid assessment of coral distribution 	1. <u>Collin et al. 2021</u> (WorldView-3); <u>Pierce et al. 2021</u> 2. <u>Live-coral surveying in-situ;</u> <u>Towle et al. 2021</u> 3. <u>Liu et al. 2014</u> , NOAA Coral Reef Watch program 4. <u>Kutti et al. 2020</u>
IDEAL DEEP/MESOPHO TIC	High-res imaging to meter resolution		Monthly or quarterly	Data or cruise metadata available within month of collection	15±%	> 10 years, long-term monitoring	 Hi-resolution imaging (ROV/AUV) of coral cover over large areas (multi-beam, photogrammetry, etc.) to meter resolution 3D mapping/modelling using LIDAR/sonar for spatial distribution eDNA measurements for rapid assessment of coral distribution 	1. <u>Maynard et al. 2010;</u> <u>Grasmueck et al. 2006;</u> <u>Price et al. 2019</u> 2. NOAA Deep Sea Coral Program 3. <u>Kutti et al. 2020</u>

Essential Ocean Variable Specification Sheet | 12

DRAFT

DESIRABLE SHALLOW	10-20m grid	Annual	Data available within 6-12 months of collection	±10%	5-10 years, med-term monitoring	 Regular/annual remote sensing, annual in-situ. Drone-based RGB imagery & deep learning 	1. <u>Giles et al, 2023</u>
DESIRABLE DEEP/MESOPHO TIC		Annual	Data available within 6-12 months of collection	20±%	5-10 years, med-term monitoring	 ROV/AUV imaging of coral cover along fixed quadrants Permanent markers at fixed monitoring sites 	1. <u>Grasmueck et al, 2006</u>
MINIMUM SHALLOW	>20m grid	Bi-annual	Data available within 1 year of collection	15±%	< 5 years, short-term monitoring	 Opportunistic/periodic remote sensing and in-situ (SCUBA, etc.) Local/volunteer-based coral reef monitoring 	1. <u>Forrester et al, 2014</u>
MINIMUM DEEP/MESOPHO TIC	Broad estimates from cruises & surveys	Opportunistic deep-water surveying via research cruises	Data available within 1 year of collection	25±%	< 5 years, short-term monitoring	 Drop cameras (weighted frame/sled) from research vessels Sonar mapping from research vessels for broad estimates of coral extent 	1. <u>Aguzzi et al, 2024</u>

EOV SUB-VARIABLE	Total habita	ble substra	ate		DEFINITION		Total habitable substrate is the % area suitable for coral settlement, inclusive of both abiotic and biotic substrates.	
	F	Resolution	1		Uncertainty		Compliant	
	Spatial Horizontal	Spatial Vertical	Temporal	Timeliness	Measurement	Stability	Sampling approach	References
IDEAL SHALLOW	1-5m grid		Monthly or quarterly	Data or cruise metadata available within month of collection	±5%	> 10 years, long-term monitoring	 1.Remote-sensing/mappi ng and imaging for 3D/4D modelling (LiDAR, satellite stereo-imagery, drone photogrammetry) 2. Fixed point (diver surveys w/ photogrammetry & transects) 	 <u>Collin et al. 2021</u> (WorldView-3) <u>Nocerino et al. 2020; AIM</u> <u>Procedure (EcoRRAP) for</u> <u>Field Photogrammetry in 4D</u>
IDEAL DEEP/MESOPHO TIC	High-res imaging to meter resolution		Monthly or quarterly	Data or cruise metadata available within month of collection	15±%	> 10 years, long-term monitoring	 Remote-sensing (acoustic: multibeam sonar) Subsurface vehicles (ROV/AUVs w/ sonar & imaging) 	1. <u>Price et al. 2019</u>
DESIRABLE SHALLOW	10-20m grid		Annual	Data available within 6-12 months of collection	±10%	5-10 years, med-term monitoring	 Drone-based remote sensing (RGB, multispectral) Periodic fixed point diver surveys Satellite bathymetry (lower-res) 	
DESIRABLE DEEP/MESOPHO TIC			Annual	Data available within 6-12 months of collection	20±%	5-10 years, med-term monitoring	 Remote-sensing (acoustic: multibeam sonar) Regional seabed mapping 	

						3. Subsurface vehicles (ROV/AUVs w/ sonar & imaging)	
MINIMUM SHALLOW	>20m grid	Bi-annual	Data available within 1 year of collection	15±%	< 5 years, short-term monitoring	 Remote-sensing (coarser-resolution) Fixed point (diver surveys w/ quadrats/ transects) 	
MINIMUM DEEP/MESOPHO TIC	Broad estimates from cruises & surveys	Opportunistic deep-water surveying via research cruises	Data available within 1 year of collection	25±%	< 5 years, short-term monitoring	 Opportunistic deep-water surveying (drop-cameras) Single-beam sonar or coarse multibeam 	1. <u>Aguzzi et al, 2024</u>

4. Observing approach, platforms and technologies

This table provides examples of approaches and technologies used to collect this EOV to help observe priority phenomena

APPROACH / PLATFORM SHALLOW	Remote-sensing (satellite-derived)	Remote-sensing (acoustic)	Remote-sensing (other): (optical/laser-based sensors & visual systems)
EOV SUB-VARIABLE(S) MEASURED	Coral condition and health Live coral cover and areal extent	Live coral cover and areal extent	Live coral cover and areal extent Total habitable substrate
TECHNIQUE / SENSOR TYPE	 Near real-time satellite products (ex. NOAA CRW) for monitoring Habitat-level mapping w/ hi-res satellite data (ex. WorldView3) or image-mosaics from satellite data (ex. PlanetScope mosaic from Dove satellites) for mapping coral areal extent 	1. Sonar mapping from research vessels for broad estimates of coral extent and macroalgal/fish abundance and distribution 2. ADCP (Acoustic Doppler Current Profilers) possibly able to assess subsurface temperature, salinity, turbidity	 LiDAR (light detection and ranging) for topography mapping MiDAR (multispectral LiDAR) for more Hi-resolution imaging and video Drone-based (RGB, multispectral, etc.) Photogrammetry, structure-from-motion (SfM) for 3D modelling of seafloor topography or reef structures
SUGGESTED METHODS AND BEST PRACTICES	 Satellite observations (monitoring for potential thermal stress via sea surface temperature) (ex. NOAA CRW); with machine-learning (ML) methods (ex. Nguyen et al. 2021) Probabilistic modelling from satellite data/space-borne remote sensing (Candela et al. 2021) References: Liu et al. 2014 Lyons et al. 2024 	 Multibeam echo sounders (MBES) for mapping seafloor topography/reef structures Backscatter analysis for habitat mapping ADCP measurements via AUV References: Feldens et al. 2023; Neves et al, 2014 Linton-Izquierdo et al, 2024 	 Drop cameras (weighted frame) from research vessels for point-sampling, repeat drops could mimic ground-truthing for larger spatial benthic area similar to STAVIRO protocol (Pelletier et al. 2021) References: Collin et al. 2018 Chirayath & Li, 2019 Price et al. 2019; Nocerino et al. 2020
SUPPORTING VARIABLES MEASURED	Temperature (<u>sea surface temperature</u>), salinity (<u>sea surface salinity</u>), turbidity (<u>ocean colour</u> , <u>dissolved organic carbon</u> , <u>particulate matter</u>)	Temperature (<u>sea surface temperature</u>), salinity (<u>sea surface salinity</u>)	Temperature (<u>sea surface temperature),</u> salinity (<u>sea surface salinity</u>)

APPROACH / PLATFORM SHALLOW	Fixed point (diver surveys)	Autonomous: surface vehicles	Autonomous: subsurface vehicles
EOV SUB-VARIABLE(S) MEASURED	Coral condition and health Coral diversity Live coral cover and areal extent Total habitable substrate	Live coral cover and areal extent Total habitable substrate	Live coral cover and areal extent Total habitable substrate
TECHNIQUE / SENSOR TYPE	 In-situ photogrammetry (overlapping hi-res reef images for 3D/4D imaging or mosaics) Transect/quadrat surveying, line-point intercept (LPI) - ex. NCRMP Benthic Community Assessments Coral health index surveying (visual or sensor assessments using health charts, imaging or PAM fluorometry) Additional sampling w/ portable sensors or collection for post-dive laboratory analyses 	 Gliders/USVs (unmanned surface vehicles): ex. Saildrone (used in <u>NOAA</u> <u>DSCRTP</u>), ReefGlider (<u>novel buoyant AUV</u>), AutoNaut (wave-propelled USV) Lower cost sUSV (small unmanned surface vehicle) for imaging/SfM modeling for shallow environments sUAS (small unmanned aerial systems) 	1. AUVs (autonomous underwater vehicles): ex. <u>REMUS</u> from WHOI
SUGGESTED METHODS AND BEST PRACTICES	 Diver-surveying including habitat type, community health (disease, mortality), LPI (substratum, coral cover, etc.), topography (rugosity), etc. References: AlM Procedure (EcoRRAP) for Field Photogrammetry in 4D; Nocerino et al, 2020 NCRMP Assessment Survey Field Protocols for U.S. Atlantic; AGGRA Coral Survey Protocol Coral Disease Handbook (CRTR) CDHC Coral Heath Field and Laboratory Protocols 	 - ASVs able to map reef topography & monitor other stress indicators. Ideally equipped with: hi-res multibeam or side-scan sonar for mapping structures cameras for visual surveying sensors for monitoring water quality/direct analysis References: Raber & Schill, 2019 Levy et al, 2018 	 AUVs able to map reef topography & monitor other stress indicators. Ideally equipped with: hi-res multibeam or side-scan sonar for mapping structures cameras for visual surveying sensors for monitoring water quality/direct analysis References: Cardenas et al, 2024; Grasmueck et al, 2006
APPROACH / PLATFORM DEEP	Remote-sensing (acoustic)	Remote-sensing (other):	Fixed-point (mooring)

EOV SUB-VARIABLE(S) MEASURED	Live coral cover and areal extent Total habitable substrate	Live coral cover and areal extent Total habitable substrate	Coral condition and health Total habitable substrate
TECHNIQUE / SENSOR TYPE	1. Multibeam mapping 2. Backscatter analysis	 LIDAR (for <200m depth) Airborne LIDAR for upper mesophotic Drop-cameras (weighted frame/sled) from research vessels for point-sampling and seabed observations 	1. Benthic landers (ex. ALBEX & BOBO from NIOZ, "Little MonSta" from MMMonKey_Pro program)
SUGGESTED METHODS AND BEST PRACTICES	ROV/AUV-mounted systems References: 1. <u>Conti et al. 2019</u> 2. <u>Foster et al. 2009</u>	References: 1. 2. 3. <u>MESH operating guidelines for underwater</u> <u>video/photographing techniques</u>	 Weighted, moored benthic landers able to collect long-term data at regular intervals. Ideally also equipped with: settling plates for monitoring larval coral recruitment. time lapse cameras for recording seafloor. References: 1. Wheeler et al. 2021
APPROACH / PLATFORM DEEP	Autonomous: profiling floats	Autonomous: subsurface vehicles	Autonomous (other): deep-water sensor networks
	Autonomous: profiling floats Supporting variables <u>only</u>		
DEEP EOV SUB-VARIABLE(S)		vehicles Coral diversity Coral condition and health Live coral cover and areal extent	deep-water sensor networks Coral condition and health

		2. <u>Satoh et al, 2025</u> (use of mini-ROV for eDNA survey)	 Flagg et al, 2020 (monitoring using ONC underwater platforms); Howe et al. 2019 (SMART subsea cable sensors) Apprill et al. 2023
SUPPORTING VARIABLES MEASURED	Temperature (sea surface temperature, subsurface temperature), salinity (sea surface salinity, subsurface salinity), turbidity (ocean colour, dissolved organic carbon, particulate matter), pH (oxygen), total alkalinity (stable carbon isotopes), dissolved inorganic carbon (DIC) (inorganic carbon, transient tracers), herbivory & reef EOVs (macroalgal canopy cover & composition, fish abundance & distribution)	Temperature (<u>sea surface temperature</u> , <u>subsurface temperature</u>), salinity (<u>sea</u> <u>surface salinity</u> , <u>subsurface salinity</u>), turbidity (<u>ocean colour</u> , <u>particulate matter</u>), pH (<u>oxygen</u>)	Temperature (<u>sea surface temperature</u> , subsurface temperature), salinity (<u>sea surface</u> salinity, subsurface salinity), turbidity (<u>ocean</u> colour, particulate matter dissolved organic carbon), pH (<u>oxygen</u>), dissolved inorganic carbon (DIC) (<u>inorganic carbon</u> , <u>transient</u> tracers)

APPROACH / PLATFORM SHALLOW & DEEP	Fixed-point (other): Community-based image monitoring	Genetic tools: eDNA & 'omics	Taxonomic expertise: museum	
EOV SUB-VARIABLE(S) MEASURED	Coral condition and health Coral diversity	Coral condition and health Coral diversity Live coral cover and areal extent	Coral diversity	
TECHNIQUE / SENSOR TYPE	 Volunteer surveys/citizen-science for assessing community biodiversity and/or spatial extent from environmental events Reef-Check (diver-based, fixed transects) Basic abiotic sampling (temperature, salinity, pH, etc.) Smartphone apps/interactive websites ex. FathomNet (volunteer training machine-learning models in FathomNet database via a site/app to reduce annotation time for visual data) 	 Coral-specific markers for assessing species-level resolution using specific primers/probes or holobiont or universal markers for assessing external microbial/reef diversity - broad community assessments Target-capture bait sets/ stress-gene assays for stressor genes (ex. apoptosis) or reproduction (ex. gamete production) - early warning indicators of stress 3. eDNA measurements for rapid assessment of coral distribution 	 Specimen collection (by divers, ROV, etc.) Reference library curation (morphological and genetic) and usage of biological collections for documentation of historical biodiversity Integrative taxonomy for confirming species ID over livestreams (ex. Okeanos, Nautilus Live) and for linking physical specimens with genetic and image data 	

SUGGESTED METHODS AND BEST PRACTICES	 Field-based citizen-science protocols for shallow, annotation/media-based protocols for deep Photo-quadrat time series References: Forrester et al. 2015 (utility of citizen-science for long-term reef monitoring); Done et al. 2017 (utility of ReefCheck AU monitoring data) Katija et al. 2022 (FathomNet image annotation database for training ML/automatic annotation for underwater imagery) 	 DNA sampling via divers/AUVs for shallow-water, and AUVs/ROVs or fixed-platforms for deep-water High-throughput sequencing Triplicate water sampling qPCR for pathogen detection References: Nishitsuji et al, 2024 (scleractinian-specific eDNA using mini-ROVs); Alexander et al. 2020 (scleractinian-specific multi-assay combined with diver/visual surveys) DeLeo et al, 2018 (gene expression profiling of stress genes in deep-water corals, proposes diagnostic markers for response monitoring) Kutti et al, 2020 	 Collection of coral samples across survey sites for laboratory analyses or deposition in biological collections Collaboration with taxonomists for confirmation of species identifications and descriptions References: Etnoyer et al. 2006 (deep-sea coral collection protocols); Mazzeo et al. 2021 Ross et al. 2011 (utility of museum records for documenting coral distributions) Kenitz et al. 2023 (utility of taxonomic knowledge for image annotation efforts)
SUPPORTING VARIABLES MEASURED	Temperature (<u>sea surface temperature</u> , <u>subsurface</u> temperature), salinity (<u>sea surface salinity</u> , <u>subsurface salinity</u>), pH (<u>oxygen</u>), Herbivory & reef EOVs (<u>macroalgal canopy cover & composition</u> , fish abundance & distribution)	Herbivory & reef EOVs (<u>macroalgal canopy</u> <u>cover & composition</u> , <u>fish abundance &</u> <u>distribution</u>)	Herbivory & reef EOVs (macroalgal canopy cover & composition, fish abundance & distribution)

5. Data and information management

Access to data and information is at the core of an ocean observing system. This section provides essential information on how to contribute data to the GOOS

GOOS approach to data management is aligned with open data and FAIR (Findable, Accessible, Interoperable, Reusable)¹ practices. All EOV data and information is valuable, thus effective data management practices are essential to ensure it remains accessible and (re)usable for future generations.

In this section you will be directed to resources that explain how you can contribute data to global ocean observing and ensure your data and information is accessible, interoperable and sustained. This resource has instructions for different scenarios: an individual submitting data, or existing data centres connecting to the system.

Please follow these practices carefully, as BioEco EOV data FAIRness relies on compliance with these guidelines.

Before proceeding, please note these important points:

- 1. As a **minimum**, you must ensure information describing your EOV data (i.e. metadata) are visible in the <u>Ocean Data and Information System (ODIS)</u>². Regardless of where the actual data is stored, evidence of its existence must be findable within ODIS.
- 2. BioEco EOV data is successfully managed if it is discoverable in the GOOS BioEco Portal. The BioEco Portal is the central point of access and coordination of BioEco EOV observing programmes. Data visible in ODIS will automatically be visible in the BioEco Portal and vice versa.
- 3. If data is published to OBIS³, it will also be visible in ODIS and the BioEco Portal. You do not need to also add it elsewhere, unless there is extra information you would like to include.

The main data management steps are as follow:

- 1. Become discoverable: ensure the data producers (e.g., organisation, programme, project, etc.) and datasets are visible in ODIS
- 2. Prepare the required metadata about the data producer and the datasets
- 3. Publish EOV data (e.g. OBIS)
- 4. Verify discoverability in ODIS

Not all steps may be relevant for you, but **Step 1 is the minimum required** to ensure your data contributes to EOVs.

¹ Wilkinson et al. 2016 https://doi.org/10.1038/sdata.2016.18

² ODIS, part of IOC-UNESCO's International Oceanographic Data and Information Exchange (IODE), is a global federation of data systems sharing interoperable (meta)data about holdings, services, and other resources to enhance cross-domain data accessibility.

³ OBIS is a global biodiversity database and IOC-UNESCO IODE component, connecting +30 nodes, +1000 institutions, and 99 countries, interoperating with other major biodiversity hubs like GBIF and makes data visible in ODIS as an ODIS node.

TO CONTRIBUTE DATA AND METADATA TO THE GLOBAL OBSERVING SYSTEM, PLEASE GO TO: https://iobis.github.io/eov-data-management/

Figure 2. Map of OBIS Nodes. See https://obis.org/contact/ for a complete list.

Contact the OBIS Secretariat (<u>helpdesk@obis.org</u>) for help setting up your data workflows. To publish BioEco EOV data from systems like NCEI or ERDDAP to OBIS, consider becoming an OBIS node or <u>collaborating with one</u>. The OBIS Secretariat can help guide you through <u>the process of becoming a Node</u>, or connect you with an appropriate OBIS node (Figure 2).

Help Resources

EOV Metadata Submission tool: https://eovmetadata.obis.org/

ODIS

- General help <u>https://book.odis.org/index.html</u>
- Connecting to ODIS <u>https://book.odis.org/gettingStarted.html</u>
- ODIS Catalogue of Sources: <u>https://catalogue.odis.org/</u>
- Ocean Info Hub: <u>https://oceaninfohub.org/</u>
- Schema.org framework <u>https://schema.org/</u>

OBIS

- OBIS Manual: <u>https://manual.obis.org/</u>
- OBIS YouTube data formatting and publishing videos: https://www.youtube.com/playlist?list=PLIgUwSvpCFS4TS7ZN0fhByj_3EBZ5IXbF
- Darwin Core term reference list: <u>https://dwc.tdwg.org/terms/</u>
- WoRMS taxonomy: <u>https://www.marinespecies.org/</u>
- Spreadsheet template generator <u>https://www.nordatanet.no/aen/template-generator/config%3DDarwin%20Core</u>
- BioData Guide with example code for transforming datasets to DwC: <u>https://ioos.github.io/bio_data_guide/</u>

GOOS BioEco Portal

- Documentation https://iobis.github.io/bioeco-docs/
- Access <u>https://bioeco.goosocean.org/</u>

Coral Data products:

National Coral Reef Monitoring Program Visualization Tool - reef status and trends for shallow (0-30m) U.S. coral reef ecosystems in the Atlantic, Caribbean, and Pacific.

<u>ReefCloud</u> - open-access platform designed to quickly and efficiently collate and analyse data to improve decision-making and inform conservation across the world.

MERMAID - an open-source application that collects and manages real-time coral reef health data, developed in partnership between the WCS, WWF, and Sparkgeo.

eReefs - reef forecasting and modelling program

References

Background information

Bax, N. et al. 2019. A response to scientific and societal needs for marine biological observations. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00395

Bojinski, S. et al. 2014. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 1431–1443, doi:<u>https://doi.org/10.1175/BAMS-D-13-00047.1</u>.

Candela, A., Edelson, K., Gierach, M. M., Thompson, D. R., Woodward, G., & Wettergreen, D. 2021. Using Remote Sensing and in situ Measurements for Efficient Mapping and Optimal Sampling of Coral Reefs. Frontiers in Marine Science. <u>https://doi.org/10.3389/fmars.2021.689489</u>

GCOS, 2022a. The 2022 GCOS Implementation Plan (GCOS-244). World Meteorological Organization, Geneva. https://library.wmo.int/records/item/58104-the-2022-gcos-implementation-plan-gcos-244.

GCOS, 2022b. The 2022 GCOS ECVs Requirements (GCOS 245). World Meteorological Organization, Geneva. https://library.wmo.int/records/item/58111-the-2022-gcos-ecvs-requirements-gcos-245

Jetz, W. et al. 2019. Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology & Evolution. 3, p. 539–551. Doi: 10.1038/s41559-019-0826-1.

Nguyen, T., Liquet, B., Mengersen, K., & Sous, D. (2021). Mapping of Coral Reefs with Multispectral Satellites: A Review of Recent Papers. Remote Sensing, 13(21), 4470. https://doi.org/10.3390/rs13214470

Miloslavich, P et al. 2018. Essential Ocean Variables for sustained observations of marine biodiversity and ecosystems. Global Change Biology. Volume 24, Issue 6. Pages 2416-2433. <u>http://dx.doi.org/10.1111/gcb.14108</u>.

Muller-Karger, F. 2018. Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks. Frontiers in Marine Science. <u>https://doi.org/10.3389/fmars.2018.00211</u>.

Raber GT, Schill SR. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs. Drones. 2019; 3(2):38. https://doi.org/10.3390/drones3020038

Towle, EK. Benson, A. Biddle, M. Bingo, SRD. Brucker, K. Canonico, G. Chory, M. Desai, K. Edmondson, M. Figuerola, M. Horstmann CL, Jackson, S. Koss, J. Landrum, J. Lohr, KE. Lorenzoni, L. Mayfield, AB. Melzian, BD. Muller-Karger, F. O'Connor, S. Santavy, DL. Storlazzi, C. Toline, CA. Torres Perez, JL. Yates, K.K. (2022). Interagency

Ocean Observation Committee (IOOC) BiologyIntegrating Core to Essential Variables (Bio-ICE) Task Team Report for Hard Corals. Satterthwaite et al. 2021. Establishing the Foundation for the Global Observing System for Marine Life. *Front. Mar. Sci. 8.* <u>https://doi.org/10.3389/fmars.2021.737416</u>

Towle, Erica K. et al. (2021). National Coral Reef Monitoring Plan. https://doi.org/10.25923/fqkq-w497

DRAFT

Guides, best practices and methods

NOAA, National Coral Reef Monitoring Program (2024) Benthic Assessment Protocols for the Atlantic Region: U.S. Caribbean, Florida and the Gulf of Mexico: 2024. Silver Spring, MD, NOAA, National Coral Reef Monitoring Program (NCRMP), 29pp. DOI: <u>https://doi.org/10.25923/e3gf-vk84</u> <u>https://repository.oceanbestpractices.org/handle/11329/1817.2</u>

Integrated EOV products and visualisations

National Coral Reef Monitoring Program Visualization Tool - reef status and trends for shallow (0-30m) U.S. coral reef ecosystems in the Atlantic, Caribbean, and Pacific.

Contributors

Leading authors	Narissa Bax, Erica Towle, Ariane Buckenmeyer
Contributing authors	Elizabeth Lawrence, Ward Appeltans, Pier Luigi Buttigieg, Ana Lara-Lopez

Acronyms and Abbreviations

CBD: Convention on Biological Diversity

EBV: Essential Biodiversity Variables

ECV: Essential Climate Variables

EOV: Essential Ocean Variables

GCOS: Global Climate Observing System

GEO BON: Group on Earth Observations Biodiversity Observation Network

GOOS: Global Ocean Observing System

IOCCP: International Ocean Carbon Coordination Project
MBON: Marine Biodiversity Observation Network
OBIS: Ocean Biodiversity Information System
ODIS: Ocean Data Information System
OCG: Observation Coordination Group
OOPC: Ocean Observations Physics and Climate Panel
SDG: Sustainable Development Goals

Glossary of terms

Derived products: outputs calculated from the EOV and sub-variables, often in combination with the supporting variables, that contribute to evaluating change in phenomena. For example, evaporation can be determined from sea surface temperature measurements; air-sea fluxes of CO2 can be derived from inorganic carbon EOV; fish stock productivity can be determined from fish abundance.

Indicators: An indicator can be defined as a 'measure based on verifiable data that conveys information about more than just itself'. This means that indicators are purpose dependent - the interpretation or meaning given to the data depends on the purpose or issue of concern. (BIP definition)

Measurement Uncertainty: the parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand (GUM)1. It includes all contributions to the uncertainty, expressed in units of 2 standard deviations, unless stated otherwise

Phenomena: properties (e.g., of a species such as distribution), processes (e.g., of the ocean such as surface ocean heat flux), or events (e.g., such as algal blooms) that have distinct spatial and temporal scales, and when observed, inform evaluations of ocean state and ocean change

Stability: The change in bias over time. Stability is quoted per decade.

Supporting variables: other measurements that are useful to provide scale or context to the sub-variables of the EOV (e.g., pressure measurements to provide information on the depth at which subsurface currents are estimated, sea temperature to understand dissolved inorganic carbon, water turbidity to support estimations of hard coral cover).

Sub-variables: key measurements that are used to estimate the EOV (e.g., counts of individuals to provide an estimate of species abundance (such as fish, mammals, seabirds or turtles), partial pressure of carbon dioxide (pCO_{2}) to estimate ocean inorganic carbon, or wave height to estimate sea state).

Timeliness: The time expectation for availability of data measured from the data acquisition time.

Appendix - Additional information

A1. Applications

This table provides examples of applications of this EOV, including contribution to other essential variable frameworks, multilateral environmental agreements, contribution to indicators and GOOS applications

EOV		
CORRESPONDING ESSENTIAL VARIABLES	ECV	Sea surface temperature, Ocean color
	EBV	Species populations, Ecosystem structure
	SDG	SDG 14.2.1 (Proportion of degraded reefs) SDG 14.5 (Marine protected area coverage)
GLOBAL INDICATORS EOV CAN CONTRIBUTE OTHER	CBD	Aichi Target 10 (Coral vulnerability reduction)
	CLIMATE	Reef heat stress alerts (NOAA Coral Reef Watch)
	OTHER	Ocean Health: Reef Resilience Index, IUCN Red List assessments
GOOS APPLICATIONS		

A2. Additional supporting material and literature

Suggested literature

Other material

A3. Readiness level assessment

Essential Ocean Variable Specification Sheet

Sponsored by:

